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Preface

This text is designed to introduce upper division undergraduates and first-year grad-
uate students tomathematicalmodeling. Themodels represent an idealization of real-
life phenomena that arise in STEM (Science, Technology, Engineering, and Mathe-
matics) fields. The science in STEM typically includes the natural sciences: biology,
physics, and chemistry, while mathematics appears as a standalone subject. The
phenomena encountered in STEM, can change in space and time, and are frequently
complex and often not totally understood. Mathematical modeling provides a means
to better understand the processes and unravel some of the complexities. This gives a
natural synergistic relationship between the various STEMfields as research expands
in the future. Examples include population dynamics in biological and economical
systems; the global positioning system; predator-prey ecosystems; crystal oscilla-
tors; fluxgate magnetometers; compartmental models to study the spread of infec-
tious diseases, e.g., COVID-19; laser systems; hybrid systems, such as networks of
gyroscopic systems; cascade arrays for generating multifrequency patterns in signal
processing; precision timing devices; pattern formation in spatial-temporal models,
e.g., Turing patterns; flame dynamics; agent-based models of bubble formation and
evolution in fluidization processes.

Qualitative and quantitative methods are developed throughout the book to derive
and solve mathematical models. The actual methods involve ideas and techniques
from dynamical systems theory. More contemporary methods, i.e., equivariant bifur-
cation theory, are also employed to study models that posses symmetry. It is well
known that symmetry alone can restrict the type of solutions of systems of ordinary
and partial differential equations, which often serve as models of complex systems.
So, it is reasonable to expect that certain aspects of the collective behavior of a
complex system can be inferred from the presence of symmetry alone. Thus, ideas
and methods from equivariant bifurcation theory can be used to model, analyze, and
predict the behavior of mathematical models without having closed-form analyt-
ical solutions and without the need of computer simulations. Inverse problems, and
fitting a model to experimental data, are also covered. Mathematical software such
as MATLAB is used to eliminate tedious calculations and for developing a better
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understanding of solution sets. Specialized topics in model reduction and simplifi-
cation, which has always been of great interest to the STEM community, are also
included.

There are several distinguishing features of the textbook. The incorporation of
real-life data in the derivation of certain models, e.g., estimating the radius of explo-
sion of an atomic bomb based on sequences of snapshots published after the explo-
sion, is one example. Another example includes the derivation of a discrete model for
reproducing the life cycle of sockeye salmon based on data that describes the growth
of the population of sockeye salmon over a long period of time. Many of the math-
ematical models include results from experiments that serve to validate the models.
For instance, the presentation of the compartmental model for COVID-19 includes
experiments in support of the model. An entire chapter is dedicated to hybrid models
or complex networks, which have some parts that are modeled as discrete event
systems, while other parts are modeled with continuous (differential or differential-
algebraic) equations. Many phenomena in STEM fields are subject to random or
stochastic effects. These phenomena rarely are completely deterministic, so they
cannot be accurately modeled with difference or differential equations. One method
of introducing these variations into the corresponding mathematical models is by
adding some type of noise. Thus, the book also includes analysis and simulations
of stochastic models, including the introduction of noise into a differential equa-
tion, which leads to the field of stochastic differential equations, Ornstein-Ullenbeck
processes for studying the effects of colored noise, and analysis of the Fokker-Planck
equation for describing the probability that a system is in some state at a given time.

Another distinguishing feature is the fact that many of the models presented in the
book are innovative models that were derived as a result of multiple projects from an
ongoing collaboration with scientists and engineers from the Naval Warfare Infor-
mation Center (NIWC), San Diego. For instance, the running model of a fluxgate
magnetometer, which appears in many chapters as it includes features that involve,
continuous models, bifurcation theory, delay, and hybrid models, was derived and
analyzed, as part of a 7-year project that led to its fabrication and a new prototype for
highly sensitive magnetic and electric field sensors. I would like to thank, in partic-
ular, Dr. Visarath In and Dr. Patrick Longhini from NIWC. Furthermore, none of
the collaborative projects would have been possible without the active participation
of students from San Diego State University. I also wish to acknowledge the finan-
cial support provided by several agencies to conduct the necessary research work
that serves as the foundation of some of the models and technologies discussed in
this book, including Army Research Office, Department of Defense, Department of
Energy, the National Science Foundation, the National Security Agency, the Office
of Naval Research, and the Naval Information Warfare Center, San Diego.

The book is intended for a broad audience. For interdisciplinary scientists in
biology, physics, and chemistry who might be interested in learning the skills to
derive a mathematical representation for explaining the evolution of a real system.
For engineers who might be interested in the bridge between the derivation of math-
ematical models and the methods to study and explain the behavior of engineering
systems, e.g., magnetic sensor systems. For applied mathematicians and physicists
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who want to develop a broader idea of applications from the field of Dynamical
Systems with Symmetry and Equivariant Bifurcation theory to model, analyze, and
predict the behavior of systems.

Indeed, the book employs rigorous theorems from the field of dynamical systems
to study the existence and stability of invariant sets, including, equilibrium or steady
states, periodic orbits, and chaotic sets. It does not include, however, rigorous proofs
of those theorems, as those proofs are beyond the scope of a textbook in mathemat-
ical modeling. Instead, theorems are employed to carry out in-depth analysis of the
behavior of a system while leveraging rigorous proofs and referring readers to the
appropriate sources for those proofs.

The book could be adapted for either an undergraduate-level or graduate-level
course. In the former case, material can be drawn from Chap. 2 Algebraic Models;
Chap. 3 Discrete Models; Chap. 4 Continuous Models, and Chap. 5 Bifurcation
Theory. In the latter case, additional material can be used from Chap. 7 Delay
Models; Chap. 8 Spatio-Temporal Models; and Chap. 9 Stochastic Models. If time
permits it, material from Chap. 6 Network-Based Modeling; and from Chap. 10
Model Reduction could also be incorporated into a graduate-level course.

Mathematics is the alphabet with which God has written the universe.

Galileo Galilei.

San Diego, CA, USA
2021

Antonio Palacios
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Chapter 1
Introduction

STEM (science, technology, engineering, andmathematics) fields are one of themost
rapidly expanding and diverse areas in the world. The science in STEM typically
includes the natural sciences: biology, physics, and chemistry, while mathematics
appears as a standalone subject. The problems encountered in STEM are frequently
complex and often not totally understood. Mathematical models provide a means to
better understand the processes and unravel some of the complexities. This gives a
natural synergistic relationship between the various STEMfields as research expands
in the future. Themathematical tools provide ways for developing a better qualitative
and quantitative understanding of some biological problems,while the STEM-related
problems often stretch the techniques that mathematicians must use to find solutions.

In this book we develop qualitative and quantitative methods to derive and solve
mathematicalmodels. Themodels, in turn, can be used to analyze and describe awide
range of STEM fields phenomena that change in space or time, or in both. Exam-
ples include: population dynamics in biological and economical systems; the global
positioning system; predator-prey ecosystems; crystal oscillators; fluxgate magne-
tometers; pharmokinetic models; laser systems; hybrid systems, such as networks of
gyroscopic systems; cascade arrays for generating multifrequency patterns in signal
processing; precision timing devices; pattern formation in spatial-temporal models,
e.g., Turing patterns; flame dynamics; agent-based models of bubble formation and
evolution in fluidization processes. We also include topics in model reduction and
simplification, which has always been of great interest to the engineering community.
We employ ideas and methods from dynamical systems theory to study the behav-
ior of models. But we also include more contemporary methods, i.e., equivariant
bifurcation theory, to study systems that posses symmetry.

Let’s start first with an overview of what constitutes a mathematical model.
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2 1 Introduction

Fig. 1.1 Conceptualization of mathematical modeling

1.1 So What Is a Mathematical Model?

Amathematical model is a representation of a real system. An idealization of natural
or artificial phenomena that allows us to investigate and understand the underlying
principles that govern those phenomena. Mathematical modeling is often an iterative
process to help one obtain a better understanding of some observation from the “Real
World.” Figure1.1 illustrates the critical steps to creating a mathematical model.
The problem from the “Real World” is abstracted into some symbolic idea, which
is often expressed as mathematical equations or “Mathematical Model.” “Empirical
Data” are collected about the system of interest, and these data are compared to the
output from themathematical model. Through an iterative process, one obtains better
approximations and obtains greater insight into the underlying principles from the
original problem from the “Real World.”

The essence of a good mathematical model is that it is simple in design and
exhibits the basic properties of the real system that one is attempting to understand.
Themodel should be testable against empirical data. The comparisons of themodel to
the real system should ideally lead to improvedmathematicalmodels. Themodelmay
suggest improved experiments to highlight a particular aspect of the problem, which
in turn may improve the collection of data. More importantly, a good model should
be able to lead to predictions of unexpected behavior. Thus, modeling itself is an
evolutionary process, which continues toward learning more about certain processes
rather than finding an absolute reality.

Consider, for instance, the real world problem of describing the behavior of a
neuron cell. In the year 1939, Alan Hodgkin and Andrew Huxley started a series
of experiments to get insight into the fundamentals of nerve cell excitability. At the
time, it was only known that a cell body was connected to a long “cable” known
as an axon. Hodgkin and Huxley conjectured that the axon served as a conductor
of electrical signals generated by the nerve cell. To prove their conjecture, they
collected empirical data by inserting a fine capillary electrode intro the nerve fiber
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of the squid giant axon. The experiments led to the first intracellular recording of an
action potential [1–4].

The joint work between Alan Hodgkin and Andrew Huxley culminated between
the years 1949–1952 with the publication [5] of amathematical model that describes
how action potentials in nerve cells are generated and propagated. Themodel consists
of a system of nonlinear Partial Differential Equations (PDEs) that approximates the
electrical characteristics of excitable cells such as neurons and cardiac myocytes.
The model has the form:

Cm
dVm
dt

= a

2R

∂2V

∂x2
+ gNam

3h(VNa − Vm ) + gK n4(VK − Vm ) + gL (VL − Vm )

dm

dt
= ϕ(T )[αm − m(αm + βm )]

dh

dt
= ϕ(T )[αh − h(αh + βh)]

dn

dt
= ϕ(T )[αn − n(αn + βn)],

(1.1)

where Vm is the action potential, Cm is the membrane capacitance that quantifies
the ability of a neuron to store ions or charges, gNa and gK are the sodium and
potassium conductances per unit area. gL is the leak channel for any other type of
ions to flow through the membrane. VNa , VK and VL are the threshold values at which
the corresponding ions (sodium, potassium and leaked) start to flow. The variables
m and h and n are dimensionless quantities that model sodium channel activation,
while n models potassium channel activation. The parameters α and β are related
to the steady-state values for activation and inactivation of the channels. ϕ is a time
coefficient that controls how quickly the channels respond. Finally, the first term on
the right, a

2R
∂2V
∂x2 , is the external current, Iapplied that is applied to a neuron to excite

it into initiating an action potential. a is the radius of the axon and R is its resistance
as a “cable” that conducts electricity.

The Hodgkin-Huxley model (1.1) is a space-time model because it accounts for
the voltage propagation of a nerve impulse through the spatial location, x , along the
axon of the cell. The voltage can be measured at any given time, t , so it is deemed a
spatial-time model.

Hodgkin and Huxley solved their mathematical model for both stationary and
propagating action potentials using what might best be described as a “brute force”
method. The iterative solution for the propagating action potential, whose results
are shown in Fig. 1.2a, took a few weeks and many thousands of rotations of the
mechanical calculator crank, see Fig. 1.2b.

Alan Lloyd Hodgkin and Andrew Fielding Huxley received the 1963 Nobel Prize
in Physiology or Medicine for their contributions.

Nowadays, we know a lot more details about the fundamental structure of a
neuron. In addition to the nerve cell and axons, there are also dendrites, which serve
to collect signals traveling from other neurons, see Fig. 1.3. More importantly, the
Hodgkin-Huxley model has led to a much deeper understanding of the structure and
dynamics of nerve cells.
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Fig. 1.2 Validation of the mathematical model proposed by Hodgkin and Huxley to describe the
generation and propagation of an action potential in a neuron or nerve cell. (Top a) is the computer
simulation from the mathematical model. (Bottom a) is the measured action potential in squid giant
axons. b Is a picture of the Brunsviga-20 mechanical computer that was used for the simulations.
Source [5]

Fig. 1.3 The fundamental structure of a neuron or nerve cell consists of an excitablemembrane cell,
dendrites to collect electrical signals traveling from other neurons and axons to transmit electrical
signals onto dendrites of another cell. Source Astrocyte Pharmaceuticals

1.2 State Variables and Parameters

Mathematical models, in general, are made up of state variables and parameters.
State variables are the quantities that we measure to characterize the evolution, in
space and time, of a system. Parameters are similar to state variables except that
they are used to “tune up” a model to operate within a certain range of values. That
is, they can be treated as “variables” which are held fixed during the course of an
experiment. For instance, in the Hodgkin-Huxley model (1.1), the action potential
Vm(t) is the state variable, which measures the response of the neuron at any given
time. All other “variables” that appear in the model are considered parameters.

The distinction between stave variables and parameters can be subtle since there
are also instances where parameters are allowed to vary during the run of an experi-
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ment. For instance, John Rinzel at NIH [6] developed a model for bursting behavior
by suggesting that certain parameters (previously treated as fixed or constant) could
also vary. The model is of the form

dx
dt

= f(x,ε)
dε

dt
= g(x,ε).

In this formulation, the state variable is x = (x, y). Since the parameter ε is
assumed to evolve very slowly, compared to the true state variables, then ε can be
treated as a variable.

1.3 Methods and Challenges

The seminal work by Lorenz in 1963 [7], and later by May in 1976 [8–10], have
lead scientists and engineers to recognize that nonlinear systems can exhibit a rich
variety of dynamic behavior. From simple systems, such as the evolution of single
species [11], an electronic or biological oscillator [12, 13], to more complex systems
such as chemical reactions [14], climate patterns [15], bursting behavior by a single
neuron cell [16], and flucking of birds [17, 18], Dynamical Systems theory provides
quantitative and qualitative (geometrical) methods to study these and many other
complex systems that evolve in space and/or time. Regardless of the origins of a
system, i.e, Biology, Chemistry, Engineering, Physics, or even the Social Sciences,
dynamical systems theory seeks to explain the most intriguing and fundamental
features of spatio-temporal phenomena.

In this book, we employ methods from Dynamical Systems theory to study the
long-term behavior of the mathematical models that serve to analyze spatio-temporal
phenomena in STEM fields. By long-term behavior we mean solution sets such as
equilibrium points, periodic points, and their stability properties, as well as more
complicated solutions, including collective behavior and chaos. The standard meth-
ods are, in general, suitable to unravel the complexity of most mathematical models.
But there is also a wide range of contemporary problems, such as network-based
modeling of hybrid systems, that are not amenable to analysis by traditional tech-
niques. Hybrid systems consist of a combination of discrete and continuous systems.
For instance, a network of a discrete number of units in which each unit is governed
by a continuous model. A representative example is that of networks of coupled
oscillators or a network of interconnected gyroscopes.

One of the major challenges in the analysis of network systems is that the cor-
responding models are high-dimensional. That is, they contain a large number of
equations. A general approach to get insight into the behavior of complex network
systems has been to derive a detailed model of its individual parts, connect the parts
and note that the system contains some sort of symmetry, then attempt to exploit
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this symmetry in order to simplify numerical computations. This approach can result
in very complicated models that are difficult to analyze even numerically. In the
example of a network of gyroscopes, each individual unit is governed by a four-
dimensional nonautonomous system of Ordinary Differential Equations (ODEs). A
network of n gyroscopes would be governed by a coupled nonautonomous ODE
system of dimension 4n, which can be a daunting task to study when n is large.
Furthermore, prediction of complicated dynamics is practically impossible.

In this book we include ideas and methods to study systems with symmetry, i.e.,
Equivariant BifurcationTheory,which allowus to formulate, directly, the appropriate
models and analyze their long-term behavior. This approach, while nonstandard,
is not entirely new among the mathematics community. However, there is much
less familiarity with the techniques of symmetry-breaking bifurcation, developed by
Golubitsky and Stewart [19–21], as they apply to mathematical modeling in STEM
fields.

1.4 Model Reduction

One of the topics that has continuously attracted strong interest in mathematical
modeling is that of Reduced Order Models. Typically, the methods for deriving a
model, either throughfirst principles or through data fitting, or through any other valid
technique, lead to many more equations, variables or parameters, that may be needed
to describe the behavior of a given phenomenon. In general, the larger the number
of equations and variables in a model the greater the complexity of its analysis.
Sometimes, computer simulations of the original model may suggest the presence
of long-term behavior that can be captured by a low-dimensional system. Thus,
reduced order modeling refers to the process of reducing a mathematical model to a
simpler form that can be more amenable to analysis, yet still capture that same low-
dimensional behavior without compromising the overall results and interpretation of
the solutions.

The Morris-Lecar model, for instance, is a two-dimensional “reduced” version of
the Hodgkin-Huxley model through the following system of Ordinary Differential
Equations (ODEs):

C
dV

dt
= −gCam∞(V )h(V − VCa) − gKw(V − VK ) − gL (V − VL ) + Iapplied

dw

dt
= 1

τw(V )
(w∞ − w),

(1.2)

where V is the action potential,w is the recovery variable, which is equivalent to the
normalized potassium-ion conductance, gCa and gK are the calcium and potassium
conductances per unit area, gL is the leak channel for any other type of ions to flow
through the membrane. Iapplied is the external current that is applied to a neuron to
excite it into initiating an action potential. m∞ and w∞ are conductance functions
that model the open-close probabilities of the channels.
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The Morris-Lecar model (1.2) describes the same three ionic currents as those
of the Hodgkin-Huxley model except that in this formulation the sodium channel is
omitted, but it can be included with a little manipulation of the recovery process.

The process of reduction and simplification may include different techniques
depending on the type of model that may be involved, i.e., PDE vs ODE. In this
book we explore various techniques for model reduction and simplification. The first
technique for model reduction is known as theGalerkin Projection. This technique is
about reducing an evolution equation or PDEmodel to anODEmodel by “projecting”
thePDEequations onto a basis of eigenfunctions. The eigenfunctionsmight be known
a priori but, in many other cases, they may need to be “extracted” directly from a
data set of experimental or numerical measurements, i.e., empirically. A popular
technique for extracting those eigenfunctions is known as the Proper Orthogonal
Decomposition. Another approach is theCenter Manifold Reduction. This technique
is applicable to reduce both PDEs or ODEs onto an invariant manifold, assumed
to be lower-dimensional than the original model. The technique is a local reduction
since it works around the location of an equilibrium point. It is commonly used to
reduce models that posses symmetry. The last topic on modal reduction is that of
normal forms. Typically, after a model has been reduced it may still contain terms
that are not essential to the long-term dynamics. Eliminating those terms should still
lead to the same qualitative behavior. This process of simplification of the model
equations is not trivial, we cover the basic ideas and procedure for deriving normal
forms.
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Chapter 2
Algebraic Models

In this chapter we study the simplest form of a mathematical model, a linear model.
Then we study some popular methods to fit a linear model through a data set, also
known as the linear least square approximation. This method is very popular in
the analysis of statistical data. As a representative example, we consider a data set
where the relation between ambient temperature and the chirping rate of crickets is
examined. The least square fitting method is then extended to nonlinear functions.
As a case study, we examine a mathematical model for a Global Positioning System
or GPS. The chapter ends with an introduction to allometric models, which serve to
study the relationship between body properties such as weight, size, andmetabolism.

2.1 Temperature and the Chirping of a Cricket

Consider the snapshot of a snowy tree cricket shown in Fig. 2.1.
We ask the fundamental question:

Is it possible to tell the temperature of the environment by listening to the chirping
of a cricket?

According to Dolbear’s law, the answer is yes. This law, formulated by Amos
Dolbear in a 1897 publication [1], states that temperature and the rate at which
crickets chirp form a linear relationship. The relationship can be described, in words,
as:

Count the number of chirps in a minute and divide by four, then add forty.

Dolbear wrote this relationship, mathematically, through the following formula:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Palacios,Mathematical Modeling, Mathematical Engineering,
https://doi.org/10.1007/978-3-031-04729-9_2
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Fig. 2.1 A snowy tree cricket, Oecanthulus niveus

T = 50 + N − 40

4
,

where N is the independent variable, representing the number of chirps per minute
and T is the dependent variable, describing temperature. Observe that this formula
reduces to the word description, divide by four and add forty : T = N/4 + 40.

In a follow-up study, “Further Notes on Thermometer Crickets”, Carl Bessey
and Edward Bessey [2], derived a slightly different linear relationship between the
number of chirps and temperature. Through careful observations and measurements,
which included wind speed, tree heights, etc., they arrived at the following formula-
tion:

T = 60 + N − 92

4.7
,

which is slightly off fromDolbear’smodel. In fact, if we simplify this latest model we
get T = N/4.7 + 40.426, which confirms a subtle deviation from Dolbear’s model.
Figure 2.2 shows a comparison of the temperature predicted by each of the linear
models.

At first glance, the values predicted by the Bessey’s model seem to hover closer to
the data measurements, while those of the Dolber model seem to overshoot the actual
data values. This result might be due to the careful observations and measurements
that were used by Bessey to derive their model. Consequently, the observations seem
to suggest that the Bessey’s model is more accurate than the Dolber’s model. An
obvious question that arises immediately, is how can we quantify the accuracy of
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Fig. 2.2 Comparison of two
linear models, Dolbear’s and
Bessey’s, which describe the
relationship between
temperature and number of
chirps of a snowy tree cricket

the two linear fits? That is, how can we, mathematically, describe how much better
the Bessey’s model is? The answer to this question is the subject of the following
section.

2.2 Least Squares Fitting of Data

The most common approach to measure, mathematically, the accuracy of the fit of
the output of a mathematical model to a data set is through the sum of square errors.
The basic idea is to find the optimal choice of parameter values of the model that can
minimize the errors. This approach is also known as least sum of square errors. Next,
we discuss the details of the approach, first for the case of linear models, and, then,
for the case of a quadratic polynomial. The latter case will lead us to a generalization
of the approach to nonlinear models.

2.2.1 Linear Least Squares Fit

Let us consider the cricket thermometer problem as a starting reference. While look-
ing at Fig. 2.2, let’s assume the data points (black circles) to be described by a
collection of n + 1 data points of the form:

{(xi , yi )}ni=0 = {(x0, y0), (x1, y1), . . . , (xn, yn)} .

We wish to quantify the accuracy of the approximation of both, Dolber’s and
Bessey’s models. These models, or any other linear model, can be written in the
general form

y(x) = a1x + a0, (2.1)
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Fig. 2.3 Individual errors,
ei , between a linear model
and the data points

where a1 is one parameter that represents the slope of the linear model, and a0 is a
second parameter that describes the y-intercept of the linear fit. Both parameters are,
so far, unknown, but their actual values will determine the accuracy of the linear fit.

The fundamental idea of the least squares best fit is to find the optimal values of
the unknown parameters, a0 and a1, that will minimize the cumulative error between
the yi values of the data points and the y values of the line, y(xi ). The errors, at each
individual data point, are depicted in Fig. 2.3.

These individual errors can be described, more formally, as

ei = yi − y(xi ), i = 0, . . . , n.

Evaluating Eq. (2.1) at each data point xi , we can rewrite the individual errors as

ei = yi − (a1xi + a0), i = 0, . . . , n.

One can visualize the linear fit moving up and down through the data points as the
parameters a0 and a1 are varied. As the line moves, the error changes dynamically.
The trick is then to find the optimal parameter values that minimizes the cumulative
error:

E(a0, a1) = e20 + e21 + · · · + e2n =
n∑

i=0

e2i . (2.2)

In this formulation, the square of the individual errors is used in order to prevent
errors of opposite sign canceling out with each other and yielding a misleading zero-
sum error. Equation (2.2) is a function of two variables, a0 and a1, whose minimum
can be computed using standard multi-variable Calculus. We first write

E(a0, a1) =
n∑

i=0

[(a0 + a1xi ) − yi ]
2 .
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Then we minimize E(a0, a1) by computing its critical values, which correspond
to the first partial derivatives of the function E with respect to a0 and a1 set to zero:

∂

∂a0
E(a0, a1) = 2

n∑

i=0

[(a0 + a1xi ) − yi ] = 0

∂

∂a1
E(a0, a1) = 2

n∑

i=0

xi [(a0 + a1xi ) − yi ] = 0.

Rearranging these expressions we get

n∑

i=0

a0 +
n∑

i=0

a1xi =
n∑

i=0

yi

n∑

i=0

xia0 +
n∑

i=0

xia1xi =
n∑

i=0

xi yi ,

which leads to the normal equations for the unknowns a0 and a1

⎛

⎜⎜⎜⎜⎝

(n + 1)
n∑

i=0

xi

n∑

i=0

xi

n∑

i=0

x2i

⎞

⎟⎟⎟⎟⎠

(
a0
a1

)
=

⎛

⎜⎜⎜⎜⎝

n∑

i=0

yi

n∑

i=0

xi yi

⎞

⎟⎟⎟⎟⎠
.

These normal equations represent a linear system of equations which can easily be
solved to yield the desired optimal parameters:

a0 = ȳ − a1 x̄, a1 =

n∑

i=0

(xi − x̄)(yi − ȳ)

n∑

i=0

(xi − x̄)2
,

where

x̄ = 1

n + 1

n∑

i=0

xi , ȳ = 1

n + 1

n∑

i=0

yi .

2.2.2 Quadratic Least Squares Fit

The linear least square approximation can be readily extended to the case of a
quadratic polynomial of the form p2(x) = a0 + a1x + a2x2. As before, the cumula-
tive error is defined as:
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E(a0, a1, a2) =
n∑

i=0

[
a0 + a1xi + a2x

2
i − yi

]2
.

Again, from standard Calculus, we minimize the error function E(a0, a1, a2) by
computing the critical values at the minimum, which correspond to the first partial
derivatives with respect to a0, a1, and a2, set to zero:

∂

∂a0
E(a0, a1, a2) = 2

n∑

i=0

[
(a0 + a1xi + a2x

2
i ) − yi

] = 0

∂

∂a1
E(a0, a1, a2) = 2

n∑

i=0

xi
[
(a0 + a1xi + a2x

2
i ) − yi

] = 0

∂

∂a2
E(a0, a1, a2) = 2

n∑

i=0

x2i
[
(a0 + a1xi + a2x

2
i ) − yi

] = 0.

Collecting coefficients of the unknown parameters, we get

a0(n + 1) + a1

n∑

i=0

xi + a2

n∑

i=0

x2i =
n∑

i=0

yi

a0

n∑

i=0

xi + a1

n∑

i=0

x2i + a2

n∑

i=0

x3i =
n∑

i=0

xi yi .

a0

n∑

i=0

x2i + a1

n∑

i=0

x3i + a2

n∑

i=0

x4i =
n∑

i=0

x2i yi .

Rewriting these equations in vector-matrix form,we arrive at the normal equations
through a linear system of equations for the unknowns a0, a1, and a2:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(n + 1)
n∑

i=0

xi

n∑

i=0

x2i

n∑

i=0

xi

n∑

i=0

x2i

n∑

i=0

x3i

n∑

i=0

x2i

n∑

i=0

x3i

n∑

i=0

x4i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎝
a0
a1
a2

⎞

⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑

i=0

yi

n∑

i=0

xi yi

n∑

i=0

x2i yi .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A closed-form solution to this system of equations can be found by use of a matrix
notation in terms of the monomials xi . This little trick is discussed next.
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2.2.3 General Discrete Least Squares

We now consider the general case of a mth degree polynomial of the form

pm(x) = a0 + a1xi + a2x
2
i + · · · + amx

m
i , i = 0, . . . , n,

If we let pm(xi ) = yi , then we can write the values of yi , i = 0, . . . , n in matrix
notation as ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 x0 x20 · · · xm0
1 x1 x21 · · · xm1
1 x2 x22 · · · xm2
1 x3 x23 · · · xm3
...

...
...

...
...

1 xn x2n · · · xmn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A

⎛

⎜⎜⎜⎝

a0
a1
...

am

⎞

⎟⎟⎟⎠

︸ ︷︷ ︸
a

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

y0
y1
y2
y3
...

yn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
y

,

where A is an (n + 1) × (m + 1) Vandermonde matrix. , a is an (m + 1) × 1 vector,
and y is an (n + 1) × 1 vector. In short, we can rewrite the above equations as a
linear system of the form

Aa = y. (2.3)

The trick to find a solvable system of equation is tomultiply both sides of Eq. (2.3)
by the transpose of A, i.e., by AT , to get

AT Aa = AT y. (2.4)

Since AT is an (m + 1) × (n + 1) matrix, it follows that AT A is a square matrix
of dimensions (m + 1) × (m + 1). In fact, direct computations show

AT A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n + 1
n∑

i=0

x1i · · ·
n∑

i=0

xmi

n∑

i=0

x1i

n∑

i=0

x2i · · ·
n∑

i=0

xm+1
i

...
...

. . .
...

n∑

i=0

xmi

n∑

i=0

xm+1
i · · ·

n∑

i=0

x2mi

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

while AT y yields,
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AT y =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑

i=0

yi

n∑

i=0

xi yi

n∑

i=0

x2i yi

...
n∑

i=0

xmi yi .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Comparing the right-hand side of the expressions for AT A and AT y, we can then
observe that Eq. (2.4) is the generalization of the normal equations. We could then,
in principle, solve Eq. (2.4) directly for a to get the optimal parameter values

a = (AT A)−1(AT y).

In practice, there are, however, more efficient algorithms, e.g., QR-algorithm,
that can be used to solve for a. Those algorithms are beyond the scope of this book.

2.2.4 Cricket Model Revisited

We will now examine different levels of approximation to the data set of the
cricket thermometer problem shown in Fig. 2.2. Let that data set be (x, y), where
x = {x0, x1, . . . , xn}T and y = {y0, y1, . . . , yn}T . We consider various polynomial
approximations of degree m, i.e.,

pm(x) = a0 + a1xi + a2x
2
i + · · · + amx

m
i , i = 0, . . . , n.

The Vandermonde matrix associated with each individual polynomial can be writ-
ten as

Am =

⎡

⎢⎢⎢⎢⎣

| | | | |
| | | | |
�1 x x2 · · · xm
| | | | |
| | | | |

⎤

⎥⎥⎥⎥⎦
,

where x j = [x j
0 , x

j
1 , . . . , x

j
n ]T . In the crickett problem, the x vector corresponds to

the number of chirps per minute, N = [N1, N2, ..., Nn]T , while the y vector repre-
sents temperature measurements, T = [T1, T2, ..., Tn]T . In the Appendix we show
MATLAB code that can be used to readily create the Vandermonde matrices Am .
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Linear Fit
This is the case where m = 1, which yields the following Vandermonde matrix:

A1 =
⎛

⎜⎝
1 N1

1 N2
...

...

⎞

⎟⎠ .

The left-hand side of the normal equation (2.4) becomes:

AT
1 A1 =

(
52 7447
7447 1133259

)
.

Solving Eq. (2.4) for a in MATLAB through the command:

A1\T,

we get a0 = 39.7441 and a1 = 0.2155. We can then write the least square linear
approximation in the form

T (N ) = 0.2155 N + 39.7441.

Quadratic Fit
In the quadratic fit, m = 2, and the corresponding Vandermonde matrix becomes

A2 =
⎛

⎜⎝
1 N1 N 2

1
1 N2 N 2

2
...

...
...

⎞

⎟⎠ ,

which leads to

AT
2 A2 =

⎛

⎝
52 7447 1133259
7447 1133259 1.8113 × 108

1133259 1.8113 × 108 3.0084 × 1010

⎞

⎠ .

Solving Eq. (2.4) for a in MATLAB through the command:

A2\T,

we get a0 = 27.8489, a1 = 0.39625, and a2 = −0.00064076. The desired quadratic
approximation becomes:

T (N ) = −0.00064076 N 2 + 0.39625 N + 27.8489.
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Fig. 2.4 Least square fitting
of polynomials of order
m = 1 up to m = 4 for the
cricket thermometer data

Cubic and Quartic Fits
A similar set of calculations yields the best cubic and quartic fits:

Tcubic(N ) = 0.0000018977 N 3 − 0.001445 N 2 + 0.50540 N + 23.138

Tquartic(N ) = −0.00000001765 N 4 + 0.00001190 N 3 − 0.003504 N 2

+0.6876 N + 17.314.

Results and comparison of each of the four polynomial fits are shown in Fig. 2.4.
In the next section we discuss different quantitative measurements that will help
compare the accuracy of the various models.

2.2.5 Model Selection

Looking back at the data set and all the polynomial fits shown in Fig. 2.4, we ask the
obvious question:

Which model is the best fit to the data?
One possible way to answer this question is by comparing the sum of square errors
(SSE) for each polynomial fit. The SSE for the different polynomial fits are shown
in Table 2.1. Accordingly, the quartic approximation shows the smallest SSE.

The SSE values shown in Table 2.1 suggest that a higher degree polynomial might
better approximate the cricket thermometer data. However, a higher degree polyno-

Table 2.1 Three different model selection criteria: Sum of Square Errors, Bayesian Information
Criteria, and Akaike, are applied to the cricket thermometer problem

Linear Quadratic Cubic Quartic

SSE 108.8 79.08 78.74 78.70

BIC 46.3 33.65 33.43 37.35

AIC 189.97 175.37 177.14 179.12
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mial involves more parameters, and, consequently, higher complexity. In addition
to the SSE values, there are two other criteria for model selection which are quite
popular, especially among the statistics community. One is the Bayesian Information
Criterion (BIC) and the other one is the Akaike Information Criterion (AIC).

Definition 2.1 (Bayesian Information Criterion) Let n be the number of data points,
SSE be the sum of square errors, and let k be the number of parameters in the model.

BIC = n ln(SSE/n) + k ln(n).

Definition 2.2 (Akaike Information Criterion)

AIC = 2k + n(ln(2π SSE/n) + 1).

The results of applying these two criteria to the cricket thermometer data are also
shown in Table 2.1. According to the BIC criterion, the best model is the cubic fitting,
while according to the AIC criterion, the best fit is the quadratic polynomial.

2.2.6 Nonlinear Discrete Least Squares

Consider again a set of data points

{(xi , yi )}ni=0 = {(x0, y0), (x1, y1), . . . , (xn, yn)} .

In the previous section we derived a formula for finding the Least Squares best fit
to an mth degree polynomial, pm(x), evaluated at the points xi . In this section, we
consider a more general (nonlinear) model function y = f (x, a), which depends on
the variable x and on n parameters a = (a1, a2, . . . , an). The error function, E(a),
which needs to be minimized, satisfies:

E(a) =
n∑

i=0

e2i =
n∑

i=0

[yi − f (xi , a)]2 , i = 1, 2, . . . , n.

A necessary condition for the error E to achieve its minimum value is for its
gradient to be zero, i.e., ∇E = 0. Since the model contains n parameters there are n
gradient equations:

∂E

∂a j
= 2

∑

i

ei
∂ei
∂a j

= 0, j = 1, 2, . . . , n.

So far the derivation is similar to that of the general discrete least squares model.
However, this time the system is nonlinear. Thus, the gradient equations cannot be
solved, in general, for a closed form solution because the derivatives ∂ei

∂a j
are functions
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of both the independent variable and the parameters. An alternative approach is to
solve for the parameters iteratively through successive approximations:

a j ≈ ak+1
j = akj + Δa j ,

where k is the iteration number andΔa is a shift vector. At each iteration, the function
f is linearized to a first-order Taylor polynomial expansion about ak . That is,

f (xi , a) ≈ f (xi , ak) +
∑

j

∂ f (xi , ak)
∂a j

(a j − akj ) = f (xi , ak) +
∑

j

Ji jΔa j ,

where Ji j is the Jacobian matrix of f (x, a). Observe that the Jacobian satisfies

Ji j = − ∂ei
∂a j

.

The individual errors ei can be approximated as follows:

ei = yi − f (xi , a) =
(
yi − f (xi , ak)

)
+
(
f (xi , ak) − f (xi , a)

)
≈ Δyi −

n∑

s=1

JisΔas ,

where Δyi = yi − f (xi , ak). Substituting these expressions into the gradient equa-
tions, they become

−2
n∑

j=1

Ji j

(
Δyi −

n∑

s=1

JisΔas

)
= 0,

which can be rewritten as

n∑

i=1

n∑

s=1

Ji j JisΔas =
n∑

i=1

Ji jΔyi , j = 1, 2, . . . , n.

Finally, the normal equations can be written in matrix form

(JT J)a = JTy. (2.5)

2.2.7 Gauss-Newton’s Method

A special case of the normal equations for the nonlinear least squares fitting is
the Gauss-Newton’s method, which is an iterative method to compute approximate
solutions to a system of equations
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f(x) = 0,

where f : D ⊆ R
n → R

n is a vector-valued differentiable function on the domain D
of the form

f(x) =

⎡

⎢⎢⎢⎣

f1(x)
f2(x)

...

fn(x)

⎤

⎥⎥⎥⎦ , x ∈ D,

Solving the normal Eq. (2.5) for a leads to

a = (JT J)−1JTy,

which simplifies to
a = J−1y.

For the purpose of data fitting, the goal is to find a set of parameters a such that
the function f (x, a) best fits the data points (xi , yi ). In this case,

y = y − f(x, a),

and ak+1 = ak + a. Substituting and solving for ak+1 yields

ak+1 = ak + J−1f(ak).

This is an iterative process by which a new set of parameters ak+1 is obtained and
updated based on previous values. The process starts with an initial value a0.

For the purpose of solving f(x) = 0, the fitting points satisfy yi = 0, so that
y = −f(x). Furthermore, the unknowns x play the role of the parameters a. Then
substituting ak+1 = ak + a with xk+1 = xk + x and solving for xk+1 leads to

xk+1 = xk − J−1f(xk). (2.6)

Equation (2.6) is the Gauss-Newton method. It is an iterative process by which a
new iterate xk+1 is obtained from the previous one. The process starts with an initial
guess x0 and it continues for k = 1, 2, . . . until convergence (which is not always
guaranteed) can be achieved.

Gauss-Newton method can also be interpreted as a discrete model. Details of the
analysis of these type of models, including convergence to long-term solutions, can
be found in the next chapter.
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2.3 The Global Positioning System

The Global Positioning System (GPS) consists of twenty four satellites orbiting the
earth, while transmitting signals that can be used to calculate the position of objects
(e.g., cell phones or users) on the earth, see Fig. 2.5.

Precision timing is essential for a GPS to work accurately. In this section we show
the algebraic equations that are used in GPS location. We also show how the Implicit
Function Theorem is used to determine the accuracy of location.

2.3.1 Algebraic Equations for GPS Location

Let (xi , yi , zi ), i = 1, . . . , 4, be the coordinates of four of the twenty four satellites Si .
Let (x, y, z) be the coordinates of the object or user. GPSworks under the assumption
that an object or user is located at the intersection of four spheres, see Fig. 2.5, whose
algebraic equations are

(x − x1)2 + (y − y1)2 + (z − z1)2 = r21
(x − x2)2 + (y − y2)2 + (z − z2)2 = r22
(x − x3)2 + (y − y3)2 + (z − z3)2 = r23
(x − x4)2 + (y − y4)2 + (z − z4)2 = r24 ,

(2.7)

where ri (also known as the “slant range”) is the true distance from satellite Si to the
object or user (Fiig. 2.6).

Fig. 2.5 The Global
Positioning System consist
of twenty four satellites that
orbit the earth, while
transmitting signals that can
be used to locate objects on
earth. Source Wikipedia
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Fig. 2.6 GPS works under
the assumption that an object
is located at the intersection
of four spheres defined
among the twenty four
satellites that orbit earth.
Source Wikipedia

It can be shown that the true distance ri from the user to the satellite Si can be
calculated as

ri = c(Δti − Δti,prop),

where c is the speed of light in a vacuum, Δti is the transit time of the signal, and
Δti,prop is the propagation delay caused by the atmosphere. Since all the precision
timing devices (i.e., atomic clocks) in the satellites run independently, then Δti is
only an approximated quantity. Indeed, cesium or rubidium atomic clocks aboard
the satellites experience phase drift due to material imperfections, electronic noise,
frequency changes due to radiation, temperature and power supply variations. The
quantity Δti aboard satellite Si is approximated as follows

Δti = Δti,pseudo + Δti,drift + Δtrec.clock,

where Δti,pseudo is the difference between the received satellite broadcast time and
the receiver’s current time,Δti,drift is the amount of time that the atomic clock differs
fromGPS standard time,Δtrec.clock is the amount of time that the receiver clock differs
fromGPS standard time. Observe thatΔtrec.clock is independent of i . Substituting into
the equation for ri we get

ri = c(Δti,pseudo + Δti,drift − Δti,prop + Δtrec.clock).

Substituting into Eq. (2.7), we get

(x − x1)2 + (y − y1)2 + (z − z1)2 = c2(t1 + d)2

(x − x2)2 + (y − y2)2 + (z − z2)2 = c2(t2 + d)2

(x − x3)2 + (y − y3)2 + (z − z3)2 = c2(t3 + d)2

(x − x4)2 + (y − y4)2 + (z − z4)2 = c2(t4 + d)2,

(2.8)
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where ti = Δti,pseudo + Δti,drift − Δti,prop and d = Δtrec.clock. Observe that the new
algebraic system of equations (2.8) is a system of four equations in four unknowns,
the user coordinates (x, y, z) and time Δtrec.clock.

2.3.2 Solution via Gauss-Newton’s Method

We now apply the Gauss-Newton’s method discussed previously in Sect. 2.2 to find
an approximate solution to the model Eq. (2.8). We seek a solution to Eq. (2.8) which
can be rewritten as

f(x) = 0,

where

f(x) =

⎡

⎢⎢⎣

f1(x) = (x − x1)2 + (y − y1)2 + (z − z1)2 − c2(t1 + d)2

f2(x) = (x − x2)2 + (y − y2)2 + (z − z2)2 − c2(t2 + d)2

f3(x) = (x − x3)2 + (y − y3)2 + (z − z3)2 − c2(t3 + d)2

f4(x) = (x − x4)2 + (y − y4)2 + (z − z4)2 − c2(t4 + d)2

⎤

⎥⎥⎦ , x ∈ R
3.

The parameter values for (xi , yi , zi ) and ti employ up to ten digits of precision
in order to achieve numerical accuracy. For brevity, we list them on Table 2.2 up to
five digits.

The speed of light constant for the calculations is c = 299792458.0m/sec.We can
now solve numerically for (x, y, z) and d using Gauss-Newton’s iterative scheme:

xk+1 = xk − J−1f(xk),

where in this case x = (x, y, z, d) and the Jacobian is given by

J =

⎡

⎢⎢⎣

2(x − x1) 2(y − y1) 2(z − z1) −2c2(t1 + d)

2(x − x2) 2(y − y2) 2(z − z2) −2c2(t2 + d)

2(x − x3) 2(y − y3) 2(z − z3) −2c2(t3 + d)

2(x − x4) 2(y − y4) 2(z − z4) −2c2(t4 + d)

⎤

⎥⎥⎦ .

Table 2.2 Parameters values for solving GPS algebraic equations numerically

i xi (m) yi (m) zi (m) ti (s)

1 1.87637 × 106 −1.06414 × 107 2.42697 × 107 0.07234

2 1.09766 × 107 −1.30814 × 107 2.03511 × 107 0.06730

3 2.45851 × 107 −4.33502 × 106 9.08630 × 106 0.06738

4 3.85413 × 106 7.24857 × 106 2.52663 × 107 0.07651
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Using initial conditions x0 = (x, y, z, d) = (1000, 1000, 50000, 0), the iterative
method converges to a solution given by

(x, y, z, d) = (−39.74783,−134.27414,−9413.62455,−0.18517),

where the location coordinates (x, y, z) are measured in km and d in sec.

2.3.3 Accuracy

In the previous section we showed that the true distance ri from the user to the
satellite Si was calculated by subtracting the current time on the user’s end from the
satellites time stamp, and then multiplying this difference by the speed of light. But
since Δti are only approximations, we would like to know what happens when these
time stamps are slightly perturbed. Conversely, if we need the location (x, y, z) of a
user to be within a specified degree of accuracy, we would like to know how much
deviation on the Δti can the system tolerate.

To answer these questions, we make use of the implicit function theorem.

Theorem 2.1 Let f : Rn+m → R
m be a continuously differentiable function. Let

R
n+m have coordinates (x, y). Fix a point (a,b) = (a1, . . . , an, b1, . . . , bm) with

F(a,b) = 0, where 0 ∈ R
m. If the Jacobian matrix

J f,y(a,b) =
[

∂ fi
∂y j

(a,b)

]

is invertible, then there exists an open set U ofRm containing a such that there exists
a unique continuously differentiable function g : U → R

m such that

g(a) = b

and
f (x, g(x)) = 0, ∀ ∈ U.

Moreover, the partial derivatives of g in U are given by

∂g

∂x j
(x) = [

J f,y(x, g(x))
]−1

[
∂ f

∂x j
(x, g(x))

]
.

Applying the implicit function theorem to our GPS equations, we get
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⎡

⎢⎢⎢⎣

∂x
∂t1

∂x
∂t2

∂x
∂t3

∂x
∂t4

∂y
∂t1

∂y
∂t2

∂y
∂t3

∂y
∂t4

∂z
∂t1

∂z
∂t2

∂z
∂t3

∂z
∂t4

∂d
∂t1

∂d
∂t2

∂d
∂t3

∂d
∂t4

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

∂ f1
∂x

∂ f1
∂y

∂ f1
∂z

∂ f1
∂d

∂ f2
∂x

∂ f2
∂y

∂ f2
∂z

∂ f2
∂d

∂ f3
∂x

∂ f3
∂y

∂ f3
∂z

∂ f3
∂d

∂ f4
∂x

∂ f4
∂y

∂ f4
∂z

∂ f4
∂d

⎤

⎥⎥⎥⎦

−1⎡

⎢⎢⎢⎣

∂ f1
∂t1

∂ f1
∂t2

∂ f1
∂t3

∂ f1
∂t4

∂ f2
∂t1

∂ f2
∂t2

∂ f2
∂t3

∂ f2
∂t4

∂ f3
∂t1

∂ f3
∂t2

∂ f3
∂t3

∂ f3
∂t4

∂ f4
∂t1

∂ f4
∂t2

∂ f4
∂t3

∂ f4
∂t4

⎤

⎥⎥⎥⎦ .

Direct computations yield

⎡

⎢⎢⎢⎣

∂x
∂t1

∂x
∂t2

∂x
∂t3

∂x
∂t4

∂y
∂t1

∂y
∂t2

∂y
∂t3

∂y
∂t4

∂z
∂t1

∂z
∂t2

∂z
∂t3

∂z
∂t4

∂d
∂t1

∂d
∂t2

∂d
∂t3

∂d
∂t4

⎤

⎥⎥⎥⎦ = −

⎡

⎢⎢⎣

2(x − x1) 2(y − y1) 2(z − z1) −2c2(t1 + d)

2(x − x2) 2(y − y2) 2(z − z2) −2c2(t2 + d)

2(x − x3) 2(y − y3) 2(z − z3) −2c2(t3 + d)

2(x − x4) 2(y − y4) 2(z − z4) −2c2(t4 + d)

⎤

⎥⎥⎦

−1

⎡

⎢⎢⎣

−2c2(t1 + d) 0 0 0
0 −2c2(t2 + d) 0 0
0 0 −2c2(t3 + d) 0
0 0 0 −2c2(t4 + d)

⎤

⎥⎥⎦ .

Substituting parameter values we get

⎡

⎢⎢⎢⎣

∂x
∂t1

∂x
∂t2

∂x
∂t3

∂x
∂t4

∂y
∂t1

∂y
∂t2

∂y
∂t3

∂y
∂t4

∂z
∂t1

∂z
∂t2

∂z
∂t3

∂z
∂t4

∂d
∂t1

∂d
∂t2

∂d
∂t3

∂d
∂t4

⎤

⎥⎥⎥⎦ ≈

⎡

⎢⎢⎣

1.27 109 −1.20 109 2.22 108 −3.00 108

2.51 108 1.23 108 −1.90 107 −3.54 108

1.73 109 −1.90 109 8.06 108 −6.38 108

−5.48 5.49 −2.41 1.39

⎤

⎥⎥⎦ .

Toaddress thefirst question,we consider first the x-coordinate of the user. Through
the chain rule we can find an approximate value of the change in the x-coordinate as
a function of changes in times Δti . That is

Δx ≈ ∂x

∂t1
Δt1 + ∂x

∂t2
Δt2 + ∂x

∂t3
Δt3 + ∂x

∂t4
Δt4.

If we allow the times to vary within an ε window, i.e., |Δti | < ε, then

|Δx | ≤
(∣∣∣∣

∂x

∂t1

∣∣∣∣ +
∣∣∣∣
∂x

∂t2

∣∣∣∣ +
∣∣∣∣
∂x

∂t3

∣∣∣∣ +
∣∣∣∣
∂x

∂t4

∣∣∣∣

)
ε.

Using the parameter values from our example, we find

|Δx | ≤ 3 × 109 ε.

This means that if the time stamps Δti are slightly perturbed by ε sec, then the
location of the x-coordinate will vary by at most 3 × 109 ε. It follows that if the time
stamps from the satellites were to be accurate to within 10−9 s (i.e., a nanosecond)
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then the x-coordinate would be accurately computed to within 3m. A similar set of
calculations can be carried out for the other coordinates.

We now address the second question. Using the same parameter values, let’s
assume we would like the accuracy in the calculation of the x-coordinate to be
within 300m. Then the time stamps would need to be accurate to within 10−8 s.

2.4 Allometric Models

Allometry is the study of the relationships between body properties, such as weight,
size, metabolism, shape, and, overall anatomy. For instance, the bones in the skeleton
of an elephant, see Fig. 2.7, compared to those of a tiger, tend to be ticker since the
body size of an elephant is significantly bigger. This type of relationship between
bone thickness and body size of animals is an example of an allometric scaling.

Typically, the scaling in those relationships follow a power law, which is formu-
lated in the form of an allometric model of the form

y = κxm, (2.9)

where x and y represent some type of body properties, e.g., weight, size, or shape,
m is a scaling exponent of the power law, and κ is just a multiplicative parameter. In
logarithmic form, Eq. (2.9) can be rewritten as

ln(y) = ln(κxm) = m ln(x) + ln(κ).

If we introduce the change of variable: X = ln(x) and Y = ln(y), b = ln(κ) then
it is easier to see that a power law scaling, expressed in logarithmic form, becomes
a straight line relationship:

Y = mX + b. (2.10)

Fig. 2.7 Relationship of thicker bones to size can be observed by comparing the skeletons of (left)
an elephant to that of a (right) tiger. This is an example of an allometric scaling. SourceWikipedia
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Fig. 2.8 Allometric scaling betweenmetabolism,measured in calories, and bodyweight, measured
in kilograms, for a wide range of animals. (Left) Original data set. (Right) Algorithmic scaling of
the data shows a good fit with a straight line

As an example, we consider next the relationship between weight andmetabolism
between different types of animals.

2.4.1 Kleiber’s Law

Common sense suggests that themetabolism (measured in calories) of certain types of
animals varieswith size. Indeed, in “Body Size andMetabolic Rate”,MaxKleiber [3]
asks whether a horse can produce more heat per day per kilogram of body weight
than a rat?”.

Again, common sense suggests that the answer is Yes. However, as Kleiber
observes, the rate of heat produced per unit body weight of big animals is less than
that of small animals. In fact, Fig. 2.8(left) shows the relationship between weight
and metabolism for a wide range of animals that include: mice, rats, guinea pigs,
rabbits, cats, macque, dogs, goats, chimpanzees, sheep, and cows. The data points
(black circles) clearly show that metabolism increases as weight increases. The rela-
tionship can be seen to be nonlinear since the data points do not seem to be aligned
in a straight line. But when the data points are plotted in a logarithmic scale, as is
shown in Fig. 2.8(right), they do seem to fit a straight line.

The above observations suggest that the data set, metabolism vs. weight, could
be described by an allometric model of the form (2.9). If we let y = M to represent
metabolism, and x = W to represent Weight, then we could write an allometric
model, in logarithmic form, as:

ln(M) = m ln(W ) + ln(κ). (2.11)

The following MATLAB script can be used to compute the parameters m and κ

for the best linear fit to the logarithmic data:
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1 % Allometric Model for Metabolism vs Weight
2 clear all;
3 close all;
4 clc;
5

6 load 'metabolism.data'
7 xdata = metabolism (:,1);
8 ydata = metabolism (:,2);
9

10 % Linear Least Squares Fit to Logarithmic Data
11 Y = log(ydata); % Logarithm of y-data
12 X = log(xdata); % Logarithm of x-data
13

14 % Find Parametmeters k, mu to Model y = k*x^mu
15 p = polyfit(X,Y,1); % Linear fit to X and Y
16 mu = p(1) % Scaling exponent
17 k = exp(p(2)) % Multiplicative factor

Upon running the script we get:

κ = 66.82, m = 0.7565,

which leads to an allometric model of the form:

M = 66.82W 0.7565. (2.12)

Applying the nonlinear least squares best fit method, also described earlier on) we
get the best fit parameters m = 63.86 and m = 0.7685, which are not that different
from those of the linear fit.

So, what is Kleibar’s law?

Kleiber’s Law is related to the actual value of the scaling exponent m. When
m = 1 we get M = κW , which means that the metabolism rate is directly propor-
tional to weight. When m < 1, then the metabolism rate decreases as a function of
weight. In fact, the particular case m = 2/3 corresponds to heat loss through skin,
as it corresponds to surface area over volume ratio. The case m = 3/4 is known as
Kleiber’s Law.

2.5 Dimensional Analysis

Mathematical models are made up of state variables and parameters, which are quan-
tities that serve to characterize a physical phenomenon. A dimension is a measure
of each physical quantity. A unit is a way to assign a number to those dimensions.
For instance, the dimension mass (M) can be measured in units of kilograms (kg) or
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Table 2.3 Some commonly used dimensions and their units

Dimension Length Mass Time Force

Symbol L M T F = MLT−2

SI Unit m (m) kg (kg) s (s) N = kg · m/s2

BG Unit f t (feet) lb (pound) s (s) b f (pound-force)

Fig. 2.9 Free fall of a
basketball

y(t) y0(t)

pounds (lb), while the dimension length (L) can be measured in units of meters (m)
or feet ( f t). Some of the most common dimensions are listed in Table 2.3.

2.5.1 Free Fall of an Object

For instance, consider a basketball falling free, i.e., based on gravity, from an initial
vertical position, y0, and initial velocity, v0, as is shown in Fig. 2.9.

A mathematical model for the vertical displacement of the basketball, which is
measured by the state variable y as a function of the independent variable time, t , is
given by

y = y0 + v0t − 1

2
gt2, (2.13)

where g is gravity. We can rewrite Eq. (2.13) in terms of the quantities that appear
in each term:

[L] = [L] +
[
L

T

]
[T ] −

[
L

T 2

]
[T 2]. (2.14)
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Observe that each additive term in Eq. (2.14), or Eq. (2.13), has exactly the same
dimensions of length, L . The process of nondimensionalization is about removing
the units from the physical variables or parameters. This results in nondimensional-
ized model equations, also known as dimensionless equations. This process can be
accomplished through a suitable change of variables. There are few different meth-
ods to figure out the correct change of variables. One, is simply by inspection of the
underlying variables.We discuss thismethod first and then amore rigorous approach.

2.5.2 Inspection Method

Consider again the dimensional version of the free falling basketball Eq. (2.13). We
want to write this equation in dimensionless form. By direct inspection we can see
that the displacement and time variables can be made dimensionless through the
following change of variables:

z = y

y0
, τ = v0t

y0
.

Observe that these quantities are dimensionless since:

[z] = [L]
[L] , [τ ] = [LT−1][T ]

[L] .

Direct substitution of the change of variables, z and τ , into Eq. (2.13) leads to:

z = 1 + τ + 1

2μ
τ 2, μ = v2

0

gy0
. (2.15)

We can quickly verify that Eq. (2.15) is dimensionless. The variables z and τ were
already shown to be dimensionless. Now, the parameter μ yields:

[μ] = [L2T−2]
[LT−2][L] .

Thus, every term in Eq. (2.15) is dimensionless. If we compare directly Eq. (2.13)
with Eq. (2.15), we can describe the nondimensionalization process as a transfor-
mation of a dimensional model with 5 variables into a dimensionless model with 3
variables. In functional form, we have:

f (y, y0, v0, g, t) =⇒ F(z, τ, μ) = 0,

where f is the original dimensional model and F is the dimensionless version. In
addition to the obvious advantage of having to work with less variables, a dimension-
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less model can be very useful in interpreting results, data analysis, and understanding
similarity properties, among many other features.

In general, the process of nondimensionalization seeks to transform a dimensional
model, f , with n variables, of the form

f (x1, x2, . . . , xn) = 0,

into a dimensionless model, F , with k < n variables, of the form

F(Π1,Π2, . . . ,Πk) = 0.

The formal process, includinghow todetermine the number, k, of non-dimensional
variables is the subject of the following theorem.

2.5.3 Buckingham Pi Theorem and Method

The following theorem provides a rigorous approach to determining the number of
dimensionless variables.

Theorem 2.2 (Buckingham Pi Theorem) Let x1, x2, . . . , xn be n dimensional vari-
ables of a physical phenomenon expressed analytically by an implicit functional
form:

f (x1, x2, . . . , xn) = 0.

If m is the minimum number of fundamental dimensions required to describe the
n variables, then there will be m primary variables and the remaining variables can
be expressed as (n − m) dimensionless and independent quantities or Pi groups,
Π1,Π2, . . . ,Πn−m. The functional relationship reduces to:

F(Π1,Π2, . . . ,Πk) = 0, k = n − m.

Exponent Method
This is a systematic method to determine the dimensionless Pi groups, as follows:

1. List all variables of the problem.
2. Express each variable in terms of fundamental dimensions.
3. Determine the number k of terms.
4. Select as many repeating variables as the number of fundamental dimensions.

Exclude the dependent variable since the repeating variables might appear in
various Pi groups.

5. Form individual Pi groups by multiplying each non-repeating variable by the
product of the repeating variables, each raised to an exponent.
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Table 2.4 Dimensions and units of the variables involved in a free fall basketball

Variable y y0 v0 g t

Dimension L L LT−1 LT 2 T

Unit m m m/s m/s2 s

Let us apply the exponent method to the free fall basketball problem. In Step 1,
we identify n = 5 variables: y, y0, v0, g, and t . In Table 2.4 we perform Step 2 by
expressing each variable in terms of fundamental dimensions

We observe a total of m = 2 fundamental dimensions, one for L and one for T .
This means that in Step 3 we can calculate k = n − m = 5 − 2 = 3 Pi groups of
dimensionless variables. In Step 4 we must select m = 2 repeating variables. We
must make sure that all of the fundamental dimensions are included in the group of
repeating variables. Since L and T are the fundamental dimensions, we can choose y0
and t as repeating variables. Next we perform Step 5 to determine each dimensionless
group.

Group Π1

Let
Π1 = ya0 t

b y = LaT bL .

In order for Π1 to be dimensionless, we must have

a + 1 = 0, b = 0.

Thus, a = −1 and b = 0, which yields:

Π1 = y

y0
.

Group Π2

Let
Π2 = ya0 t

bv0 = LaT b(LT−1).

In order for Π2 to be dimensionless, we must have

a + 1 = 0, b − 1 = 0.

Thus, a = −1 and b = 1, which yields:

Π2 = v0t

y0
.

Group Π3

Let
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Π3 = ya0 t
bg = LaT b(LT−2).

In order for Π3 to be dimensionless, we must have

a + 1 = 0, b − 2 = 0.

Thus, a = −1 and b = 2, which yields:

Π3 = gy0t

v2
0

τ 2.

Observe that Π1 = z, Π2 = τ , and Π3 = τ 2

μ
, correspond to the results obtained

by the inspection method.

2.5.4 Allometric Model of Atomic Bomb Blast

In a series of papers, Geoffrey Taylor [4, 5] derived an allometric model that could
accurately predict the radius, and, more importantly, the power of the Trinity test in
White Sands, NM. What is most remarkable about those papers is that Taylor was
able to obtain those very accurate results from studying photographs of the ball of
fire produced during the explosion, as is shown in Fig. 2.10.

Furthermore, the article was considered a serious violation of national security
since, at the time of publication, the amount of energy released by the atomic explo-
sion was a highly guarded top secret by the U.S. government. In this section, we will
discuss the process that allowed Taylor to derive the allometric model. But, first, we
start with a dimensionless analysis.

There are n = 4 variables: radius of the atomic blast, R, energy released by the
blast, E , time t , and ambient air density, ρ. Their dimensions and units are listed in
Table 2.5.

The table shows a total of m = 3 fundamental dimensions for L , M , and T . It
follows that there is k = n − m = 4 − 3 = 1 Pi group of dimensionless variables.
Assuming the radius of the blast, R, to be the dependent variable, and all otherm = 3
variables to be repeating, we let

Π = Eatbρc R = (ML2T−2)aT b(ML−3)cL .

In order for Π to be dimensionless, we must have:

(L) 2a − 3c + 1 = 0,
(M) a + c = 0,
(T ) −2a + b = 0.

Solving this linear system we get:
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Fig. 2.10 Sequential
photographs of the atomic
blasts produced by the
Trinity test in White Sands,
NM

Table 2.5 Dimensions and units of an atomic blast

Variable R E t ρ

Dimension L ML2T−2 T ML−3

Unit m kg · m2/s2 s kg/m3

a = −1

5
, b = −2

5
, c = 1

5
.

The dimensionless variable becomes

Π = E−1/5t−2/5ρ1/5R.

Solving for R we get an allometric model of the form
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R = κ

(
Et2

ρ

)1/5

. (2.16)

Taylor shows that the scaling factor κ is , approximately one. In addition, the
density of air at 1310 m, which is the elevation of White Sands, NM, is also, approx-
imately, one. Thus, setting κ = 1 and ρ = 1, Eq. (2.16) becomes:

R = (Et2)1/5.

In logarithmic form we get

ln(R) = 2

5
ln(t) + 1

5
ln(E).

Using the data from the sequence of photographs of the blast, we can get the best
linear least square fit to be:

ln(R) = 0.4024 ln(t) + 6.4038,

which is very close to the analytical result of the allometric model. A very critical
observation, which is obtained by comparing these last two equations, is the fat that
the linear fit to the data yields the y-intercept:

1

5
ln(E) = 6.4038.

This is critical information because while solving for E , Taylor was able to esti-
mate the energy released by the atomic blast, namely:

E = e5×6.4038 = e32.02 = 8.05 × 1013 J.

The actual amount of energymeasured by scientists at LosAlamoswas 9 × 1013 J.
This serves to validate the information obtained by Taylor from a simple series of
snapshots. Figure 2.11 shows the fits of the data to the allometric model.

2.6 Exercises

Exercise 2.1 Calculate the least-squares approximation to thedata shown inTable2.6
below by a function of the form

f (x) = a1 + a2x + a3 sin (123(x − 1))
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Fig. 2.11 The graph on the left shows the best fitting allometric relationship of the atomic blast,
while the graph on the right shows the linear fit to the logarithm of the data

Table 2.6 Data set for least-squares approximation

xi 1 2 3 4 5 6 7 8 9 10 11

fi 0.0 0.6 1.77 1.92 3.31 3.52 4.59 5.31 5.79 7.06 7.17

Table 2.7 Sales projections

Months Sales in USD

0 200,000

24 248,000

48 296,000

72 344,000

96 392,000

120 440,000

Exercise 2.2 Table 2.7 shows sales projections of a company per month. Use the
least-squares approximation to fit a linear model the data shown in the table.

Exercise 2.3 Consider the following data set

{(xi , yi )}3i=0 = {(1, 6), (2, 5), (3, 7), (4, 10)} .

Analytically, calculate the parameters a0 and a1 that will lead to the best linear fit
model of the form

y(x) = a1x + a0.

Exercise 2.4 Consider the following data set shown in Table2.8:

(a) Apply the linear least squares algorithm to fit a model of the form

y(t) = a1t + a0.
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Table 2.8 Data set

i 1 2 3 4 5 6 7 8

ti 0.10 0.23 0.36 0.49 0.61 0.74 0.87 1.00

yi 0.84 0.30 0.69 0.45 0.31 0.09 −0.17 0.12

Table 2.9 Size of a population of antelopes

Time, ti , in years Population size, yi , in hundreds

1 3

2 4

4 6

5 11

8 20

(b) Apply the nonlinear least squares algorithm to fit a model of the form

y(t) = a1e
a0t .

(c) Compare the results of the two models.

Exercise 2.5 Male fiddler crabs (Ucapugnax) possess an enlargedmajor clawwhich
can be used for fighting or threatening other male crabs. For a particular species of
fiddler crab, the following allometric model has been derived:

Mc = A(w)r ,

where Mc represents the mass of the major claw, and w describes the body mass of
the crab. Parameters are: A = 0.036, and r = 1.356.

(a) Rewrite the allometric model in logarithmic form.
(b) Determine the slope of the line while plotting ln(M) and ln(Awr ).
(c) What is the approximate predicted major claw mass for a male fiddler crab with

a mass of 400 mg?
(d) What is the expected body mass of a male fiddler crab whose major claw mass

is 53.0 mg?

Exercise 2.6 The size of a population of antelope at various times is shown in
Table 2.9.

Apply the nonlinear least square fitting, i.e., Gauss-Newton method, to fit an
exponential model of the form

yi = aebti ,

where a and b are the parameters that need to be found through the nonlinear fitting
process.
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Table 2.10 Data set

i 1 2 3 4 5 6

xi 1.2 2.3 3.0 3.8 4.7 5.9

yi 1.1 2.1 3.1 4.0 4.9 5.9

Exercise 2.7 Consider the following case of a simple logistic function

y(t) = K

1 + e−r(t−t0)
,

where K is a maximum value which is achieved by y(t) as t → ∞, r is the logistic
growth rate, and t0 is the value at which the midpoint K/2 is achieved.

Write a MATLAB code to generate a data set of y(t) + noise, where “noise” can
be generated by a random variable. Then apply the nonlinear least square fitting to
fit the values of K , r and t0 that best fit the data set.

Exercise 2.8 Repeat the previous exercise with a parametrized circumference func-
tion

s(t) = (
cx + r cos(t), cy + r sin(t)

)
,

where (cx , cy) is the center of the circumference and r its radius.

Exercise 2.9 Consider the following data set shown in Table2.10:

(a) Apply the linear least squares algorithm to fit a model of the form

y(t) = a1x + a0.

(b) Plot the results, including the data set and the approximated line, in MATLAB.
(c) Compare the results of the data set and the approximated straight line.

Exercise 2.10 The planarian Schmidtea mediterranea is a freshwater triclad that
lives in southern Europe and Tunisia [6]. It is a model for regeneration, stem cells
and development of tissues such as the brain and germline. Estimates of metabolic
rate are based on studying the relationship between dry and wet mass. Tabletab:sch
shows this relationship.

Use a linear least square fitting to derive an allometric model for wet mass as a
function of dry mass, of the form

WM = A(DM)r ,

where WM represents wet mass, DM is dry mass, and A and r are parameters to be
found through the least squares fitting of the data (Table2.11).
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Table 2.11 Wet vs dry mass in Schmidtea mediterranea

Wet Mass (mg) Dry Mass (mg)

0.090 0.051

0.101 0.064

0.139 0.088

1.176 0.324

1.506 0.417

2.486 0.592

5.452 1.446

4.434 1.231

7.726 2.022

14.834 3.976

16.124 4.259

10.379 2.637

12.827 3.388

5.920 1.574

0.815 0.254

0.091 0.030

0.070 0.035

2.957 0.798

0.185 0.084

0.288 0.114

0.536 0.160

2.199 0.604

4.300 1.149

7.970 2.001

11.192 3.082

16.003 4.387

17.250 4.604

13.389 3.469

Exercise 2.11 Assume that last night, at dusk, you heard 31 chirps in 14s from the
nearest cricket in the backyard. Use the chirping crickets and temperature model to
estimate the outside temperature.

Exercise 2.12 The following algebraic model allows us to compute the future value
FV of an initial or present value, PV , which is assume to increase at the grow rate
g, over a period of time T .

FV = PV (1 + g)T .
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What will the population of India be in year 2030 if the population in 1985 was
estimated to be 751 million and the growth rate is expected to remain at 2.5% a year
for the entire period?

Exercise 2.13 The pressure drop, Δp = p1 − p2, along a straight pipe of distance
D has been experimentally studied, and it is observed that for laminar flow of a
given fluid and pipe, the pressure drop varies directly with the distance, l, between
pressure taps. Assume that Δp is a function of D and l, the velocity, V , and the fluid
viscosity, μ̃. Use dimensional analysis to deduce how the pressure drop varies with
pipe diameter.

Exercise 2.14 A cylinder with a diameter, D, floats upright in a liquid. When the
cylinder is displaced slightly along its vertical axis it will oscillate about its equilib-
rium position with a frequency, ω. Assume that this frequency is a function of the
diameter, D, the mass of the cylinder, m, and the specific weight, γ , of the liquid.
That is,

ω = f (D,m, γ ).

Determine, with the aid of dimensional analysis, how the frequency is related
to these variables. If the mass of the cylinder were increased, would the frequency
increase or decrease?

Exercise 2.15 Consider the physical quantities s, v, a, and t , with dimensions [s] =
L , [v] = LT−1, [a] = LT−2, and [t] = T . Determine whether each of the following
equations is dimensionally consistent:

(a) s = v t + 0.5a t2.
(b) s = v t2 + 0.5a t .
(c) s = sin (a t2/s).

Exercise 2.16 A student is trying to remember some formulas from geometry. In
what follows, assume S is area, V is volume, and all other variables are lengths.
Determine which formulas are dimensionally consistent:

(a) V = πr2h.
(b) A = 2πr2 + 2πrh.
(c) V = 0.5b h.
(d) V = πd2.
(e) V = πd3/6.

Exercise 2.17 Consider the physical quantities m, s, v, a, and t , with dimensions
[m] = M , [s] = L , [v] = LT−1, [a] = LT−2, and [t] = T . Assuming each of the
following equations is dimensionless consistent, find the dimension of the quantity
on the left-hand side of the equation:

(a) F = m a.
(b) K = 0.5m v2.
(c) p = m v.
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(d) W = m a s.
(e) L = m v r .

Exercise 2.18 Suppose quantity s is a length and quantity t is a time. Suppose the
quantities v and a are defined by

v = ds

dt
, a = dv

dt
.

(a) What is the dimension of v?
(b) What is the dimension of a?

(c) What are the dimensions of
∫

v dt and
∫

a dt?

Exercise 2.19 Use the future-value model above to determine what must be put in
the bank today if we want to have $20,000 in the bank in 10 years if we expect the
interest rate to be 5 percent.

Exercise 2.20 Solve each of the following problems by applying Newton’s method.

(a) e−x − x = 0.
(b) x3 − x − 1 = 0.
(c) e−x2 − cos x = 0.

Exercise 2.21 Consider the following vector-valued function:

F(x1, x2) =
⎡

⎣
f1(x1, x2)
f2(x1, x2)
f3(x1, x2)

⎤

⎦ =
⎡

⎣
x1 − 0.4
x2 − 0.8

x21 − x21 − 1

⎤

⎦ .

(a) Apply the Gauss-Newton’s method to find the zero contours of f1, f2, and f3.
That is, find the approximate values of (x1, x2) such that F(x1, x2) = [0, 0, 0]T .

(b) Sketch the zero contours on the (x1, x2) plane.
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Chapter 3
Discrete Models

This chapter considers mathematical models of phenomena that change in discrete
periods of time. Examples include various population models and economic interest
models. These representative examples introduce basic concepts for analysis of dis-
cretemodels, such as equilibria, periodic points, and their stability properties. Similar
analytic tools are extended in subsequent chapters to study other types of models.
These qualitative methods allow the study of long-term behavior in discrete models,
showing that even very simple mathematical models can produce very complicated
behavior.

Discrete dynamicalmodels are appropriatewhen information is available at evenly
spaced time intervals or dynamic events occur at discrete times, such as seasonal
reproduction and death. Most students first encounter discrete models in high school,
while working principle and interest problems; however, discrete models can exhibit
complex behavior with very simply described dynamics (May [1]). We present a
variety of models to illustrate how discrete dynamical models simulate real world
problems and how to analyze them. Formore detailed studies of the theory of discrete
dynamical systems the reader should consider the texts by Aligood et al. [2] or
Devaney [3].

3.1 Malthusian Growth Model

The simplest growth model is the discrete Malthusian growth model, which has a
constant rate of growth, r , (representing births or deaths) and satisfies the equation:

Pn+1 = Pn + r Pn = (1 + r)Pn, (3.1)

where P0 represents the initial population.
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Table 3.1 U.S. Population (early years) in millions from Year 1790 to Year 1870. Source: Census
Bureau

Year Census Model % Error Year Census Model % Error

1790 3.929 3.929 – 1840 17.069 17.553 2.83

1800 5.308 5.300 −0.15 1850 23.192 23.679 2.10

1810 7.240 7.150 −1.24 1860 31.433 31.942 1.62

1820 9.638 9.645 0.08 1870 39.818 43.090 8.22

1830 12.866 13.012 1.13

This model states that the population at the next time period, Pn+1, depends on
the current population, Pn , plus the net per capita growth rate, r times the current
population. Iterating the model we get:

P1 = (1 + r)P0,

P2 = (1 + r)P1 = (1 + r)2P0,
...

Pn = (1 + r)Pn−1 = (1 + r)n P0.

In this particular case, we can find a closed-form solution:

Pn = (1 + r)n P0, (3.2)

which is valid at any time, n, any initial condition, P0, and any growth (or decay)
rate, r .

Example 3.1 As an example of a Malthusian growth model, we consider the popu-
lation of the United States from Year 1790 to Year 1870. Table 3.1 shows the actual
population growth drawn from the Census Bureau.

Applying the nonlinear least squares best fit, discussed earlier in Chap. 2, to the
entire population data set collected from U.S. Census Bureau, we find the best fitting
model to be:

Pn = (1.1460)n16.35,

which shows a growth rate of r = 0.1460 and initial population P0 = 16.35 (in
millions). Figure 3.1 shows a plot of the original data set and the nonlinearMalthusian
model fitting.

In this case, the SSE criterion yields SSE = 2876, which is a relative large value.
Nevertheless, the model is very simple as it contains only two parameters, the growth
rate, r , and the initial population, P0.
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Fig. 3.1 Fitting of a
Malthusian growth model to
the U.S. population
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3.2 Economic Interest Models

Most students first encounter discretemodels in high school, while learning the basics
of principal and interest. These models are closely related to the Malthusian growth
populationmodels,where capital in an account or loanbalance replaces population. In
this section we review the basic compound interest problem and simple amortization
of a loan. We show that both problems can be described as discrete systems. The
corresponding models become more complex when interest becomes variable or
capital value is tied to inflation indices.

3.2.1 Compound Interest

The classic compound interest problemassumes anoriginal deposit of P0, theoriginal
principal, and that the bank offers an interest rate, r per year. Compound interest is
the capital accrued from the interest paid on the original deposit over multiple years.
Assuming interest is paid annually, the principal in the account satisfies the discrete
model:

Pn+1 = Pn + r Pn = (1 + r)Pn,

where Pn is the principal in the nth year. This is the same model as the Malthusian
growth model, (3.1), so it has the general solution:

Pn = (1 + r)Pn−1 = (1 + r)n P0.

This model is easily modified to account for the bank compounding the interest
more frequently, k times/year. For example, if the interest is compounded monthly,
k = 12, then the annual rate r is replaced by i = r/k = r/12. In general, the com-
pound interest model is written:
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Pt = (1 + i)kt P0, (3.3)

where t is the number of years for which the principal is being calculated. This
solution is known as the compound interest formula.

3.2.2 Loans and Amortization

People often need to borrow money to make larger purchases, such as a car or house.
Financial institutions loan this money for a fixed interest rate over a fixed period
of time. The borrower pays (usually monthly) a fixed amount that is determined by
what is called an amortization table.

Let P0 be the amount borrowed at an annual interest rate, r , for a term of N
years. We want to compute the monthly payment, d, that the borrower must pay.
The discrete model is based on the interest assessed on the principal balance during
the month, Pn , minus the payment made by the borrower. Let i = r/12, then the
equation describing the new principal balance is:

Pn+1 = (1 + i)Pn − d, (3.4)

where the first term represents the previous balancewith themonthly interest charged
and d is the monthly payment deducted from the remaining loan amount.

Iterating Eq. (3.4) gives:

P1 = (1 + i)P0 − d,

P2 = (1 + i)P1 − d = (1 + i)2P0 − (1 + i)d − d,

P3 = (1 + i)3P0 − (1 + i)2d − (1 + i)d − d,

...

Pn = (1 + i)n P0 − (1 + i)n−1d − · · · − (1 + i)d − d

= (1 + i)n P0 − d
[
(1 + i)n−1 + · · · + (1 + i) + 1

]
.

The term in brackets above relates to the finite partial sum when studying geometric
series. Using telescoping series, a closed form solution is available for the loanmodel
(3.4):

Pn = (1 + i)n P0 − d
(1 + i)n − 1

i
. (3.5)

Since there are 12N equal payments and P12N = 0, it follows from (3.5) that the
monthly payments, d, are:
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d = P0
i(1 + i)12N

(1 + i)12N − 1
. (3.6)

As these formula are readily calculated and because they are so useful for house-
holds trying to design a budget, there are ubiquitous sources available for computing
amortization tables. This information is critical for banks deciding how much they
can extend in loans based on a client’s income and credit information. MatLab has
a financial function in its Financial Toolbox that computes relevant values with the
function amortize. The web has many amortization calculators based on these
formulae.

Example 3.2 Suppose a person wants to purchase a car, where the current interest
rate is 3.6% for a 5 year loan. Find the monthly payment if this person must borrow
$50,000 to purchase a luxury car and determine the total amount paid over the 5 years.
If the person can only afford a maximum monthly payment of $600, then what is the
maximum amount of capital that the person can borrow.

In the first scenario, P0 = $50, 000, i = 0.036/12 = 0.003, and N = 5. From
(3.6), it follows that d gives:

d = 50, 000 × 0.003(1.003)60

(1.003)60 − 1
≈ $911.83.

Thus, the monthly payment must be about $911.83. Since there are 60 payments
made over the loan, then the cost of purchasing this car is $54,709.80.

With the limit on the monthly payment capped at $600, Eq. (3.6) is solved for P0.
It follows that

P0 = d
(1 + i)12N − 1

i(1 + i)12N
≤ 600 × (1.003)60 − 1

0.003(1.003)60
≈ 32, 900.94.

Thus, the maximum amount that can be borrowed for the monthly payments up to
$600 is $32,900.94.

The loan model (3.4) also represents aMalthusian growth model with emigration.
However, the loan model has fixed interest and payments, while population models
rarely have fixed growth rates or emigration rates, so (3.4) is an approximate model
usually valid over short periods of time. Banks have used variable interest loans in
the past, but they were not popular.

Exercise 3.2 examines a basic model for annuity plans, which is similar to the
discrete loan model, except the employee (and possibly the employer) make fixed
monthly contributions. Unlike standard loans, annuities generally use indices pegged
tomarkets and/or bonds, so the interest andbase capital is variable,which complicates
the model. The extension of the annuity model to populations gives a Malthusian
growth model with immigration. The inclusion of variability in rates of interest or
growth in economic or population models complicates the analysis.
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3.3 Time-Dependent Growth Rate

Close examination of the Census data shows that the growth rate of the U.S. popu-
lation is not exactly a constant. Indeed, in 1800, 1900, and 2000, the growth rates
declined, respectively, from 36.4%, 21.0%, down to 9.71%. The lowest growth rate
recorded was 7.2% and it happened during the Great Depression. This means that a
Malthusian growth model with constant rate should be considered only during short
periods of time. One way to adjust for variations in the growth rate is to introduce
time as a dependent variable in the model. This issue is discussed next.

3.3.1 General Population Model

In the formulation of the Malthusian model of U.S. growth, the population at time
n + 1 is assumed to depend only on the current population at time n. This type of
model can be generalized as:

Pn+1 = f (Pn),

where f (P) is known as the updating function. Then, given an initial population,
P0, we could iterate the function f to generate future values of the population. This
generalization is a discrete dynamical model in the form of a first order difference
equation and is autonomous, as it only depends on P . Notice that the iteration of the
model yields a time-evolving population even though time does not appear explicitly
in the model. Autonomous models are the most common models used with animal
populations, as their populations most often depend on their existing populations.

In an alternative formulation, the population at time n + 1 might depend on both,
the population at the current time n and on time itself. This type of model can be
generalized as

Pn+1 = f (tn, Pn),

where the updating function f now has time as an explicit variable. This general-
ization is a discrete dynamical model in the form of a first order, nonautonomous,
difference equation since time appears explicitly. The inclusion of time might com-
plicate analysis but human populations have significant time-varying changes, which
render this type of model preferable.

3.3.2 Nonautonomous Malthusian Growth Model

We have seen that over the course of time the growth rate of the U.S. population
has actually declined. One way to introduce a declining growth rate is to rewrite the
Malthusian growth model as a nonautonomous discrete model of the form:
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Fig. 3.2 (Left) Least squares best linear growth rate computed directly from the U.S. Census
data. (Right) Census data with the best fitting Malthusian growth model and the nonautonomous
Malthusian growth models

Pn+1 = Pn + (a + btn)Pn, (3.7)

in which the constant growth rate, r , is replaced by a time-dependent rate, r(t) =
a + btn . A linear least squares fit through the previously recorded growth rates yields:
a = 0.3744 and b = −0.01439, so that:

r(tn) = 0.3744 − 0.01439n,

where n is measured in decades after 1790. Observe that b being negative implies a
declining growth rate. Setting P0 as a parameter, a nonlinear fit of the model yields
P0 = 3.758 with a SSE = 740.1, which is substantially better than SSE = 2876
found earlier in the nonlinear fit to the discrete Malthusian growth model. A graph
of this best fitting linear growth rate is shown in Fig. 3.2(left) with a simulation of
this model shown on the right.

Alternative, we can set three parameters: a, b, and P0 and perform again the
nonlinear fit of the model, which yields: a = 0.2961, b = −0.009675, and P0 =
6.305, so that:

Pn+1 = (1.2961 − 0.009675n)Pn .

This last model fit has a SSE = 326.9, which is substantially lower. See
Appendix A.2.1 for MatLab programs to find this nonlinear best fit. Figure 3.2(right)
shows that both nonautonomous Malthusian growth models are quite accurate. Fur-
thermore, the SSE indicates that fitting the model with three parameters yields a
smaller error, even though the approximation for earlier years is not as good. Future
growths are, however, not as accurately fit by neither of the two nonautonomous
Malthusian growth models. In fact, the simple Malthusian growth model with con-
stant growth rate performs better for longer periods of time.
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3.3.3 Logistic and Beverton-Holt Models

Malthusian growth models assume that populations can increase (or decrease)
indefinitely. In real-life situations, other factors, such as environmental constrains
can regulate the growth of populations. In this section we introduce two models that
incorporate such regulations. The first model, logistic growth, includes a negative
quadratic term that limits growth due to crowding or resource availability. It has the
form:

Pn+1 = Pn + r Pn

(
1 − Pn

M

)
, (3.8)

whereM is a parameter also know as the carrying capacity, which represents the sus-
tainability of growth due to crowding or resource availability. Once again, applying
a nonlinear least squares fit to the U.S. Census data, we get

Pn+1 = Pn + 0.2245Pn

(
1 − Pn

451.7

)
, (3.9)

with initial population P0 = 8.575. In this case, we get SSE = 557.4, which is
slightly worse fit than the nonautonomous Malthusian growth model.

Another popular model that incorporates growth regulation is the Beverton-Holt
model. This model is commonly found in ecological problems, and it has the form:

Pn+1 = aPn

1 + Pn
b

. (3.10)

An advantage of this model, over logistic growth, is that the updating function
remains positive for any population, Pn > 0. Both models admit a closed-form solu-
tion. Applying a nonlinear least squares fit to the U.S. Census data, we get

Pn+1 = 1.2307Pn

1 + Pn
2110.4

, (3.11)

with initial population P0 = 8.261, which is very similar to that of the logistic model.
In this case, we get SSE = 519.5, which is also very similar to the logistic model.

Figure 3.3 compares the best three-parameters fits to the U.S. Census data, includ-
ing: Malthusian growth, logistic growth, and Beverton-Holt models. A closer look
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at the graphs show that these fits are not as accurate for long-term predictions of
population growth. Appendix A.2.1 shows the MatLab code for finding these best
fitting and producing the graph in Fig. 3.3.

3.4 Qualitative Analysis of Discrete Models

In this section we study, qualitatively, the long-term solutions of an autonomous
discrete model. By qualitative, we mean without having an exact solution of the
model. Thus, consider the general autonomous discrete model:

pn+1 = f (pn).

Some of the simplest types of long-term behavior of a discrete model are equilib-
rium points, in which the iterative process produces the same solution at each step.
That is:

pe = f (pe).

Equilibrium points correspond to the limit as n → ∞ of a closed-form solution
for pn , should such solution exist. In practice, such solution does not exist, yet we
can still determine the long-term behavior by solving pe = f (pe). Now, in general,
f (p) is nonlinear, so this equation must be solved algebraically or numerically.
Geometrically, equilibrium solutions, pe, are found when f (p) crosses the identity
map. Note: Any closed population model, meaning no migration into or out from
another population source, must have a trivial equilibrium, pe = 0.

After the equilibrium points have been calculated, the next step is to determine
their local stability properties by computing the first derivative of f (p) and evalu-
ating it at each equilibrium point. The stability properties are then inferred by the
sign and magnitude of the derivative. If the sign is positive, then nearby solutions
monotonically move away while staying on the same side of the equilibrium point. If
the sign is negative, then solutions have an oscillatory behavior, so they jump back
and forth across the equilibrium point.
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These observations can be formalized through the following theorem.

Theorem 3.1 (Stability of Equilibrium Points) Consider the discrete dynamical
model:

pn+1 = f (pn), (3.12)

where f (pn) is a differentiable updating function. Suppose that pe is an equilibrium
of this model.

• If f ′(pe) > 1, solutions of the discrete dynamical model grow away from the
equilibrium (monotonically), and the equilibrium is unstable.

• If 0 < f ′(pe) < 1, solutions of the discrete dynamical model approach the equi-
librium (monotonically), and the equilibrium is stable.

• If−1 < f ′(pe) < 0, solutions of the discrete dynamical model oscillate about the
equilibrium and approach it, and the equilibrium is stable.

• If f ′(pe) < −1, solutions of the discrete dynamical model oscillate about the
equilibrium but move away from it, and the equilibrium is unstable.

Proof Assume p = pe to be an equilibrium and let δ be a small, i.e., |δn| � 1,
perturbation around it. We wish to determine if the equilibrium point pe is stable
under the small perturbation δn , so let

pn = pe + δn.

Substituting into Eq. (3.12) we get

pe + δn+1 = f (pe + δn).

Expanding the right hand side of this last equation as a Taylor series about pe we
get

pe + δn+1 = f (pe) + f ′(pe)δn + O(|δn|2).

Since f (pe) = pe, we obtain

δn+1 = f ′(pe)δn.

This last equation is in the same form as that of Malthusian growth. An exact
solution is given by

δn = ( f ′(pe))nδ0.

It follows that if | f ′(pe)| < 1 then δn → 0 as n → ∞. This implies that the
perturbation dies out and so the equilibrium pe is stable. On the other hand, if
| f ′(pe)| > 1 then δn → ∞ as n → ∞. In this latter case the perturbation grows
up and the equilibrium point pe is unstable. �

Example 3.3 (U.S. Population Models) The analysis of the U.S. population models
begins with finding the equilibria. The best fitting discrete logistic populationmodel
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for the U.S., Eq. (3.9), and Beverton-Holt populationmodel for the U.S., Eq. (3.11),
are closed discrete autonomous populationmodels, so have one equilibrium at Pe =
0. They have another equilibrium, called the carrying capacity equilibrium, where
the population of these models eventually approach with sufficient iterations.

The general logistic population model is:

Pn+1 = Pn + r Pn

(
1 − Pn

M

)
.

The equilibria are found algebraically by solving:

Pe = Pe + r Pe

(
1 − Pe

M

)
or r Pe

(
1 − Pe

M

)
= 0.

Solving for Pe yields two equilibrium points: the extinction equilibrium, Pe = 0 and
the carrying capacity equilibrium, Pe = M .

The general Beverton-Holt model satisfies:

Pn+1 = aPn

1 + Pn
b

.

The equilibria are found algebraically by solving:

Pe = aPe

1 + Pe
b

or Pe

(
Pe
b

+ 1 − a

)
= 0.

Solving for Pe yields two equilibrium points: the extinction equilibrium, Pe = 0 and
the carrying capacity equilibrium, Pe = b(a − 1).

From the equilibrium analysis above, Eq. (3.9) gives a carrying capacity equi-
librium, Pe = 451.7. Thus, this model predicts that the U.S. population will level
off at 451.7 million. Similarly, Eq. (3.11) gives a carrying capacity equilibrium,
Pe = 2110.5(0.23065) = 486.8. Thus, this model predicts that the U.S. population
will level off at 486.8 million, similar to the logistic population model.

Figure 3.4 shows the intersections of the updating functions for the logistic and
Beverton-Holt population models with the identity map give the equilibria for the
models.

For very low populations, the population has plenty of resources and should grow
according to the Malthusian growth model, i.e., exponentially. It follows that often
the extinction equilibrium has populations growing away from this equilibrium, so
it is unstable. On the other hand, populations tend to approach the stable carrying
capacity equilibrium.
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Fig. 3.4 A graph of the updating functions for the logistic and Beverton-Holt models compared to
the identity map

Stability
The stability of the equilibria is determined by evaluating the first derivative of the
updating function at the equilibria. The updating function of the best fitting logistic
population model for the U.S. satisfies:

Pn+1 = f (Pn) = Pn + 0.2245Pn

(
1 − Pn

451.7

)
,

which has a derivative that satisfies:

f ′(P) = 1.2245 − 0.4490P

451.7
.

At the extinction equilibrium, Pe = 0, we have

f ′(0) = 1.2245 > 1,

which shows this equilibrium is unstable. At the carrying capacity equilibrium,
Pe = 451.7, we have

f ′(451.7) = 0.7755 < 1,

which shows this equilibrium is stable.

The updating function of the best fittingBeverton-Holtmodel for theU.S. satisfies:
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Pn+1 = b(Pn) = 1.23065Pn

1 + Pn
2110.5

,

which has a derivative that satisfies:

b ′(P) = 1.23065
(
1 + P

2110.5

)2 .

At the extinction equilibrium, Pe = 0,

b ′(0) = 1.23065 > 1,

which shows this equilibrium is unstable. At the carrying capacity equilibrium,
Pe = 486.8 million, we have

b ′(486.8) = 0.81257 < 1,

which shows this equilibrium is stable.

3.5 Ricker’s Model of Salmon Population

A drawback of the logistic growth model is the fact that the updating function yields
negative values for large populations. To circumvent this problem, Ricker [4] intro-
duced a new discrete model of the form:

Pn+1 = R(Pn) = aPne
−bPn , (3.13)

where a and b are positive parameters. The updating function, R, in Eq. (3.13) yields
values that are similar to those of the logistic for low population sizes, but it remains
positive for large populations.

3.5.1 Salmon Population in the Skeena River

Salmon follow a life cycle with meticulous precision and timing. The cycle begins
in freshwater where eggs are hatched and alevins emerge. These are tiny fish with
the yolk sac of the egg attached to their bellies. Once they have consumed all of the
yolk sac, the alevins emerge as fry. Eventually, fry migrate downstream towards the
oceans. Sockeye fry, for instance, tend tomigrate to a lake, spending 1–2 years before
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Fig. 3.5 Sockeye salmon in
their breeding colors

Table 3.2 Four year averages of Skeena River sockeye salmon (population in thousands)

Year Population Year Population Year Population

1908 1,098 1924 706 1940 528

1912 740 1928 510 1944 639

1916 714 1932 278 1948 523

1920 615 1936 448

migrating to sea, where they may spend 1–7 years. Then they return to freshwater
and prepare for spawning, see Fig. 3.5. Females build nests, or redds. Eventually,
both the males and females die.

The periodic life cycle of breeding and dying of salmon can be described as a
discrete process. We will use the Skeena River population data from Table 3.2 to find
the best logistic growth and Ricker’s updating functions.

An alternate method of finding the best fitting population model is to organize the
population data into Pn and Pn+1, then apply a simple curve fitting algorithm to find
the updating function. The following MATLAB script automates this process.

1 function salmon
2

3 close all;
4 clear all;
5 clc
6

7 load 'pndata.data';
8 load 'pn1data.data';
9

10 x = linspace (0 ,1200 ,50);
11

12 options = optimset;
13 LogGrow = inline('p(1)*x+p(2)*x.^2','p','x');
14 RickGrow = inline('q(1).*x.*exp(q(2)*x)','q','x');
15

16 a = 1.0;
17 b = 0.5;
18 param0 = [a,b];
19 param = lsqcurvefit (LogGrow ,param0 ,pndata ,pn1data ,[],[], options);
20
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21 c = 1.0;
22 d = 0.0;
23 qparam0 = [c,d];
24 qparam = ...

lsqcurvefit (RickGrow ,qparam0 ,pndata ,pn1data ,[],[], options)
25

26 figure (1);
27 plot(pndata ,pn1data ,'bo','MarkerSize ' ,12);
28 hold on;
29 plot(x,LogGrow(param ,x),'k-','LineWidth ' ,3);
30 hold on;
31 plot(x,RickGrow(qparam ,x),'r-','LineWidth ' ,3);
32 grid on;
33 axis ([0 1200 0 1000]);
34

35 % Set up fonts and labels for the Graph
36 legend('Salmon Population ','Logistic ','Ricker ' ,...
37 'location ','northwest ');
38 fontlabs = 'Times New Roman ';
39 xlabel('$P_n$ ','FontSize ',16,'FontName ',fontlabs , ...
40 'interpreter ','latex ');
41 ylabel('$P_{n+1}$','FontSize ',16,'FontName ',fontlabs , ...
42 'interpreter ','latex ');
43 set(gca ,'FontSize ' ,36);

The nonlinear least squares method readily finds the best updating functions for
the logistic growth model to be:

Pn+1 = 1.3277 Pn − 0.0006146 P2
n , (3.14)

and Ricker’s models is:

Pn+1 = 1.5344 Pne
−0.0007816 Pn . (3.15)

The sum of the square errors for the Logistic and Ricker’s models are: SSElog =
128, 980 and SSERicker = 124, 519, respectively. The results of the fitting methods
are shown in Fig. 3.6. The figure shows that both fitting methods yield very similar
results for population sizes of up to a million. In addition, the SSE values show that
Ricker’s updating function fits the data only 3.6% better than the logistic updating
function.

Below is the MatLab function for minimizing the sum of square errors for the
Ricker’s updating function. A similar process is followed to best fit the logistic
updating function.
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Fig. 3.6 Population data of
sockeye salmon from the
Skeena river and the best
fitting logistic growth and
Ricker’s updating functions
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Fig. 3.7 Population data of
sockeye salmon from the
Skeena river and simulations
of the time evolution of the
populations using two
models: logistic growth and
Ricker’s model
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1 function J = sal_ric(p0,pndata ,pn1data)
2 % Least Squares fit to Ricker 's model
3 N = length(pndata);
4 err = [pn1data - p0(1)*pndata.*exp(-p0(2)*pndata)];
5 J = err*err '; % Sum of square errors
6 end

The data for Pn+1 vs. Pn is entered with an initial parameters p0 = [a,b]:
p1 = fminsearch(@sal_ric,p0,[],pndata,pn1data)

We can now employ the best fitting updating functions for the logistic andRicker’s
models to simulate the time evolution of the salmon populations. In addition, the
initial population is varied to find the least sum of square errors when compared to the
time series data. Figure 3.7 shows the best fitting simulations. The best fitting initial
values are P0 = 1096.8 for logistic growth and P0 = 1103.7 for Ricker’s model,
which are both quite close to the actual population data. The least sum of square
errors for these fits are SSElog = 120, 918 and SSERicker = 126, 428, indicating
that the time series simulation with the logistic growth model is about 4.6% better
than the Ricker’s model.
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3.5.2 Analysis of the Ricker’s Model

In this section we analyze the general Ricker’s Model:

Pn+1 = R(Pn) = aPne
−bPn .

Existence of Equilibria
The equilibria are found by solving R(Pe) = Pe for Pe. That is, solving

Pe = aPee
−bPe or Pe(ae

−bPe − 1) = 0.

It follows that the equilibria are

Pe1 = 0 and Pe2 = ln(a)

b
,

with a > 1 required for a positive equilibrium. The first equilibrium is the extinction
equilibrium, and the second one is the carrying capacity.

The stability of the equilibria are found by evaluating the derivative of the updating
function at the equilibria. The derivative of the Ricker updating function is given by:

R ′(P) = a(P(−be−bP) + e−bP) = ae−bP(1 − bP).

At the extinction equilibrium, Pe1 = 0,

R ′(0) = a.

If 0 < a < 1, then Pe1 = 0 is stable and the population goes to extinction (and there
is no positive equilibrium). If a > 1, then Pe1 = 0 is unstable and the population
grows away from the equilibrium.

At the carrying capacity equilibrium (assuming a > 1), Pe2 = ln(a)

b and

R ′(ln(a)/b) = ae− ln(a)(1 − ln(a)) = 1 − ln(a).

Once again the stability of this equilibriumonly depends on the value of the parameter
a. There are three possible behaviors near this equilibrium. If 1 < a < e ≈ 2.7183,
then the solution of Ricker’s model is stable and monotonically approaches the
equilibrium Pe2 = ln(a)/b. If e < a < e2 ≈ 7.389, then the solution of Ricker’s
model is stable andoscillates as it approaches the equilibrium Pe2 = ln(a)/b. Finally,
if a > e2 ≈ 7.389, then the solution of Ricker’s model is unstable and oscillates as
it grows away from the equilibrium Pe2 = ln(a)/b.

This analysis is applied to the best Ricker’s model for the Skeena sockeye salmon
population from 1908 to 1952, Eq. (3.15). From the analysis above, the equilibria
are
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Pe1 = 0 and Pe2 = ln(1.535)

0.000783
= 547.3.

The derivative is

R ′(P) = 1.535e−0.000783P (1 − 0.000783P).

It follows that at the extinction equilibrium, Pe1 = 0, R ′(0) = 1.535 > 1, so this
equilibrium is unstable (as expected). At the carrying capacity equilibrium, Pe2 =
547.3, the derivative, R ′(547.3) = 0.571 < 1, so this equilibrium is stable with
solutions monotonically approaching the equilibrium, as observed in the simulation.

A similar analysis is performed for the logistic model, given by Eq. (3.14). For
this model, the equilibria are

Pe1 = 0 and Pe2 = 533.2.

The derivative is
F ′(P) = 1.3277 − 0.001229 P.

It follows that at the extinction equilibrium, Pe1 = 0, F ′(0) = 1.3277 > 1, so this
equilibrium is unstable (as expected). The carrying capacity from this model is Pe2 =
533.2, which has F ′(533.2) = 0.6716 < 1. Hence, this equilibrium is stable with
solutions monotonically approaching the equilibrium, as observed in the simulation.

Both the Ricker’s and logistic models provide very similar updating functions
passing through the Skeena River salmon data. From these updating functions with
the best fitting P0, the discrete dynamical model simulations give very similar solu-
tions. The carrying capacity equilibria are separated by only a few percent with both
showing the same monotonic stability. Yet the large Pn behavior of these models
from their updating functions is dramatically different.

3.6 Heat Exchange

Consider the following puzzle. A glass of milk is held at 0◦C temperature and an
identical glass of water is held at 100◦C temperature. We would like to heat the glass
milk to a temperature >50◦C using only the heat from the glass of water. The heat
exchange would leave the glass of water at a temperature < 50◦C.

Assume there is no heat exchange with the environment or with any other external
source. One extra glass is available and heat capacities per unit volume of the water
and the milk are assumed to be the same. The heat exchanged can be accomplished
through the following steps:
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Fig. 3.8 Heat exchange
problem. A glass of milk is
colder than the water at the
beginning of the heat
exchange process and hotter
than the water at then end.
Source Mark Levi [5]

Step 1 Scoop 1/nth of the milk into a ladle.
Step 2 Dip the ladle in the hot water until the temperatures equalize.
Step 3 Dump the warmed milk into the extra glass.
Step 4 Repeat steps 1–4 n times.

The heat transfer process is illustrated in Fig. 3.8.
Eventually, after n iterations, all of the milk ends up in the extra glass. Dipping

the 0 ◦C milk ladle in the warm water reduces the temperature by a constant factor
because the heat of n units of water spreads equally among the n + 1 units of liquid.
Let Tk be the temperature of the water after k repetitions. Assuming T0 = 100 ◦C to
be the initial temperature of the water, then a discrete model for the cooling process
of water can be written as

Tk+1 = n

n + 1
Tk . (3.16)

Equation (3.16) can also be rewritten as

Tk+1 = 1

1 + 1

n

Tk .

Observe that this equation is in the form of Malthusian growth, with growth rate

r = 1

1 + 1

n

.

Thus, a closed form solution is given by
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Tn = 1
(
1 + 1

n

)n T0.

As n → ∞, the denominator of this last equation approaches e. Also, all of the
milk is in the extra glass, and the water temperature reaches the equilibrium state

T∞ ≈ 100

e
≈ 36.8◦C.

Thus, the milk’s temperature has increased to about 63◦C, which is considerable
above the 50◦C goal. Coincidentally, this is also the perfect temperature for cooking
salmon,while 36.8◦C is the temperature of the human body.Amathematical curiosity
from this derivation is that we can write e as follows

e ≈ 1 + Tsalmon

Tbody
.

3.7 Newton’s Method

Suppose we need to find a solution to the equation g(x) = 0. Then Newton’s method
says we should consider the map

xn+1 = xn − f (xn)

f ′(xn)
. (3.17)

Observe that Eq. (3.17) is the single-variable version of Gauss-Newton’s method
discussed in the previous chapter.

To calibrate themethod, let’swrite down theNewtonmap for solving the following
equation g(x) = x2 − 4 for its roots. Direct substitution into Eq. (3.17) leads to

xn+1 = xn − x2n − 4

2xn
. (3.18)

The equilibrium points of this map are the solutions to

x − x2 − 4

2x
= x,

which yields xe1 = 2 and xe1 = −2. We now proceed to determine the stability of
each of these equilibrium points by computing the derivative of
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Table 3.3 Newton’s method applied to find the roots of g(x) = x2 − 4

n xn

0 1.0

1 2.5

2 2.05

3 2.0006

4 2.0

f (x) = x − x2 − 4

2x
,

which satisfies

f ′(x) = 1 − x2 + 4

2x2
.

At the first equilibrium point xe1 = 2 we get

f ′(2) = 0,

which shows that xe1 = 2 is stable. A similar calculation shows that xe2 = −2 is also
stable. This means that Newton’s method can converge to both roots of the equa-
tion g(x) = x2 − 4. Which one is actually found depends on the initial conditions.
For instance, iterating Eq. (3.18) starting from x0 = 1 shows, see Table 3.3 rapid
convergence towards xe1 = 2.

3.8 Periodic Points and Bifurcations

It is also possible for discrete models to exhibit long-term behavior in the form of
periodic points. Consider the following example of a population dynamics.

Example 3.4 The population Pn , at time tn , of a certain species is governed by the
following logistic model.

Pn+1 = r Pn

(
1 − Pn

C

)
,

where C represents the carrying capacity of the environment. When r = 3.4 and
C = 5000, computer iterations with initial conditions P0 = 102 produce the time
series graph shown in Fig. 3.9. The first few points represent transient behavior but,
eventually, the iterations settle into a period-two cycle at {42108, 2, 2598}.

To determine the stability properties of the cycle, we need to formalize first the
concept of periodicity.
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Fig. 3.9 Period-2 cycle in a
discrete model of population
dynamics
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Definition 3.1 Consider a general discrete model of the form

xn+1 = f (xn, λ), (3.19)

where λ is a parameter. The orbit of a point x1 is

O(x1) = {x1, x2, x3, . . .},

where x2 = f (x1), x3 = f (x2) = f 2(x1), and so on. A point x1 is a periodic
point, with period k, if there is an integer k such that the orbit satisfies O(x1) =
{x1, x2, . . . , xk},where x2 = f (x1), x3 = f (x2) = f 2(x1), . . . , xk = f k−1(x1), xk+1

= f k(x1) = x1, and k is the smallest such integer.

The above definition implies that k is the minimum number of iterates that is
required for the orbit to repeat a point. A related concept is that of eventually periodic
points.

Definition 3.2 A point x1 is an eventually periodic point, with period k, if there is
an integer N such that

f n+k(x1) = f n(x1), ∀n ≥ N ,

and k is the smallest such integer.

Example 3.5 Consider the tent map:

xn+1 = T (xn) =
{
2xn, xn ≤ 1/2
2(1 − xn), 1/2 ≤ xn

Let x1 = 1
7 . The orbit of this initial point under the Tent map is
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O(
1

7
) =

{
1

7
,
2

7
,
4

7
,
6

7
,
2

7
,
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Consequently, x1 = 1
7 is an eventually periodic point.

3.8.1 Chain Rule and Stability

The stability properties of periodic points can also be determined with a theorem
analogous to that of equilibriumpoints, i.e., Theorem3.1, applied to f k(x) as follows.

Theorem 3.2 (Stability of Periodic Points) Consider the discrete dynamical model
(3.19). Let x1 be a period-k point. Then

• If |( f k) ′(x1)| < 1, solutions of the discrete dynamicalmodel approach the periodic
orbit (monotonically), and the periodic orbit is stable.

• If |( f k) ′(x1)| > 1, solutions of the discrete dynamical model grow away from the
periodic orbit (monotonically), and the periodic orbit is unstable.

We could now proceed to compute the stability of the period-2 cycle using The-
orem 3.2. This would require, however, that we compute f 2(x) and its derivate
explicitly, which can be a little cumbersome due to algebraic difficulties. For higher
order cycles, with arbitrary period k, wewould need to compute f k(x) directly, which
can be a more daunting task. An alternative approach, which circumvents algebraic
difficulties, is to use the chain rule for computing derivatives of composition of
functions:

( f ◦ g)′(x) = f ′(g(x))g′(x).

Applying this rule to the kth iterate of a map, f k , we can compute its derivative
through a simpler form, as follows

( f k)′(x1) = ( f ( f k−1))′(x1) = f ′( f k−1(x1))( f k−1)′(x1)
= f ′( f k−1(x1)) f ′( f k−2(x1)) · · · f ′(x1).

Substituting xk = f k−1(x1), xk−1 = f k−2(x1), and so on, we get a simpler form
for the desired derivative of the kth iterate of the map

( f k)′(x1) = f ′(xk) f ′(xk−1) · · · f ′(x1).

We now illustrate the use of this formula.

Example 3.6 Consider again the population model of the previous example

Pn+1 = r Pn

(
1 − Pn

C

)
.
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Recall that a period-2 cycle {x1, x2} = {4, 2108, 2, 2598} was found at r = 3.4
and C = 5000. To study its stability we compute the derivative of

f (x) = r x
(
1 − x

C

)
,

and get

f ′(x) = r − 2r
x

C
.

Applying Theorem 3.2, we determine the stability of the period-2 cycle by com-
puting

|( f 2)′(x1)| = | f ′(x1) · f ′(x2)| = | f ′(4, 2108) · f ′(2, 2598)| = 0.76.

Consequently, we conclude that the period-2 cycle {4, 2108, 2, 2598} is locally
stable.

The MATLAB code used to generate the time-series diagram of Fig. 3.9 is shown
below.

1 clear all
2 clc
3

4 %Discrete Model: P(n+1)=r*P(n)(1-P(n)/5000)
5 r=3.4; %parameter r
6 N=200; %number of iterations
7 P(1) =100; %initial value
8

9 for k=1:N-1
10 P(k+1)=r*P(k)*(1-P(k)/5000);
11 end
12 t=1:N;
13 figure (1)
14 plot(t(1:50),P(1:50),'k--o','LineWidth' ,2,...
15 'MarkerSize ',8,'markerfacecolor ','r')
16 title('{P_{n+1} = r P_n (1 - P_n /5000)}')
17 xlabel('{t_n}')
18 ylabel('{P_n}')
19 set(gca ,'FontSize ' ,30);
20 grid on;

3.8.2 Period Doubling

The birth of the period-2 corresponds to what is known as a period-doubling bifurca-
tion. To investigate this concept further, we can simplify first the number of param-
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eters in the logistic model through the substitution Pn = Cxn . This leads to a one-
parameter model of the form

xn+1 = r xn(1 − xn). (3.20)

We know that equilibrium points correspond to solutions of

r x(1 − x) = x,

which are xe1 = 0 and xe2 = 1 − 1/r . Observe that the branch of nontrivial equilib-
rium points xe2 yields negative values when 0 < r < 1. From a population dynamics
standpoint, these values make no sense. But from a mathematical standpoint, these
points can still be considered, for completeness purposes, as valid. Stability proper-
ties are determined by Theorem 3.1, i.e., through the derivative of f (x) = r x(1 − x),
which satisfies

f ′(x) = r − 2r x .

At the extinction point xe1 = 0 we get

f ′(0) = r.

At the nontrivial equilibrium xe2 = 1 − 1/r we obtain

f ′(1 − 1/r) = 2 − r.

It follows that on the interval 0 ≤ r < 1 the extinction point xe1 = 0 is stable
while the nontrivial equilibrium point xe2 = 1 − 1/r is unstable. On the interval
1 < r < 3, the stability properties of these two equilibrium points changes, however.
Thus, xe1 = 0 becomes unstable and xe2 = 1 − 1/r stable. Furthermore, it can be
shown that all initial conditions x0 on the interval 0 < x0 < 1 lie in the basin of
attraction of the nontrivial equilibrium xe2 = 1 − 1/r , so there can be no periodic
cycles of prime period > 1 for 1 < r < 3.

Let’s examine in more detail how the exchange of stability between xe1 and xe2
occurs. At r = 1, the branch of nontrivial equilibrium points xe2 = 1 − 1/r meets
the extinction equilibrium xe1, while the derivative of f (x) satisfies

f ′(r = 1, x = 0) = 1.

This implies that the stability Theorem 3.1 cannot be applied. It cannot be applied
because when the derivative of a general discrete model (3.19) satisfies | f ′(rc, xe)| =
1, a bifurcation occurs. In this case, the type of bifurcation, in which two branches
of equilibrium points exchange stability, is known as a transcritical bifurcation. In
chapter 5 we study the analytical conditions that allow us to identify and classify a
transcritical bifurcation, as well as other types. Returning to the logisticmodel (3.20),
the transcritical bifurcation occurs at the point (rc, xe) = (1, 0).
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Now, let’s consider the period-2 cycle, which corresponds to solutions of f 2(x) =
f ( f (x)) = x , mainly

r [r x(1 − x)(1 − r x(1 − x))] = x .

Expanding and factoring out the equilibrium points we get

−x

[
x −

(
1 − 1

r

)] [−r3x2 + (
r3 + r2

)
x − (

r2 + r
)] = 0

The period-2 cycle is found by solving the quadratic part of this last equation,
which yields

x1,2 = 1

2

[(
1 + 1

r

)
± 1

r

√
(r − 3)(r + 1)

]
.

Observe that x1,2 exist (i.e., are real-valued) only when r ≥ 3. At r = 3 we have

f ′(1 − 1/r) = −1.

This is the birth point of the period-2 cycle that corresponds to a period-doubling
bifurcation. Furthermore,

( f 2)′(1 − 1

r
) = f ′(1 − 1/r) f ′(1 − 1/r) = +1.

Past the critical point r > rc, where rc = 3, the derivative at the nontrivial equilib-
rium xe2 = 1 − 1/r satisfies | f ′(1 − 1/r)| > 1, so now both equilibrium points are
unstable. The slope of the graph of f 2(x) at the nontrivial equilibrium point becomes
greater than one and this graph intersects the line y = x at two new points either side
of the nontrivial equilibrium point. Since the new equilibrium points of f 2(x) are
not equilibrium points of f (x), they form a new period-2 cycle. This mechanism,
i.e., where ( f 2)(xe) = +1, corresponds to a pitchfork bifurcation for the updating
function f 2(x). Details of analytical conditions for identifying and classifying this
type of bifurcation can be found in Chap. 5. It can be shown that the slope of f 2(x)
is less than one at each of the new period-2 points. Thus, the period-2 cycle is stable.
To find the exact interval of stability of the period-2 cycle we must solve

| f ′(1 − 1/r) f ′(1 − 1/r)| < 1.

Direct substitution and simplification yields

|r2 − 2r − 4| < 1.

There are two cases to consider. We start with
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Fig. 3.10 Period-4 cycle in a discrete model of population dynamics

−1 < r2 − 2r − 4, or 0 < (r + 1)(r − 3).

Since r > 0, the only possible solution is for 3 < r . The second case is

r2 − 2r − 4 < 1, or r2 − 2r − 5 < 0,

whose solution is 1 − √
6 < r < 1 + √

6.
Combining these two cases, we find the interval of stability for the period-2 cycle

to be
3 < r < 1 + √

6.

As r increases further, beyond the threshold value of r = 1 + √
6, the period-2

cycle changes from stable to unstable, and a new period-4 cycle is born. For instance,
Fig. 3.10 illustrates a period-4 cycle, {x1, x2, x3, x4} = {1, 9141, 4, 1347, 2, 5044,
4, 3750}, found at r = 3.5.

Similar calculations show that the period-4 cycle is stable on the interval r1 <

r ≤ r2, where r1 = 1 + √
6 and r2 = 1 + √

3 + r1. This process repeats itself into
what is known as a period-doubling cascade. In fact, it can be shown that a period-k
cycle is stable on the interval rk1 < r ≤ rk , where rk = 1 + √

3 + rk−1. The limit

lim
k→∞ rk = r∞ = 3.61547

is known as the Feigenbaum number. The intervals of stability of the period-k cycles
show that bifurcations occur faster and faster as r increases, so that convergence
towards r∞ is geometric. Furthermore, the distance between successive transitions
shrinks by a constant factor
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Fig. 3.11 Bifurcation diagram of the logistic model xn+1 = r xn(1 − xn)

δ = lim
k→∞

rk − rk−1

rk+1 − rk
= 4.669,

which is a universal constant known as Feigenbaum constant.
It can also be shown that while the period-2 cycle remains stable, every point of

the interval 0 < x < 1, except for the unstable nontrivial equilibrium point and its
pre-images, is in the basin of attraction of the period-2 cycle. Consequently, there are
no other periodic cycles except for the period-2 cycle and the two equilibrium points
xe1 = 0 and xe2 = 1 − 1/r . Similarly, as the period-doubling cascade evolves into
period-k cycles, every point of the interval 0 < x < 1, except for equilibria, cycles
of lower order and their pre-images, is in the basin of attraction of the period-k orbit.

Figure 3.11 is a bifurcation diagram for the logisticmodel and it serves to visualize
the sequence of changes in solution types as the bifurcation parameter r varies.

Figure 3.12 shows a zoom-in region of the previous bifurcation diagram, in which
we can observe in more detail the period-doubling cascade and the complexity that
follows it.

Notice that the period-doubling cascade described above started at an equilibrium
point and the cycles included only points of even period. But it is also possible to
have cycles of odd period. For instance, direct calculations while solving f 3(x) = x
yield a polynomial

(r6 + 5r5 + 3r4 + r3)x3 + (3r6 + 4r5 + r4)x4 − (3r6 − r5)x5 + r6x6 = 0.
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Fig. 3.12 Zoom-in regions of the bifurcation diagram of the logistic model xn+1 = r xn(1 − xn)

Fig. 3.13 Period-3 cycle in the logistic model xn+1 = r xn(1 − xn) occurs near r = 3.8284

Solving this polynomial one can show that a period-3 cycle starts at r = 1 +
2
√
2 = 3.828427. Figure 3.13 shows a small window of parameter space where the

period-3 cycle can be observed.



72 3 Discrete Models

TheMATLAB code used to generate the bifurcation diagram of Fig. 3.11 is shown
in the Appendix.

3.9 Chaos

The long-term behavior of mathematical models that we have discussed so far
includes, mainly, equilibrium points and periodic cycles or orbits. It is also possible
for very simplemathematical models to displaymuchmore complicated behavior [6]
known as chaos. Loosely speaking, chaotic behavior is aperiodic behavior in which
the orbits do not repeat. Instead, they linger around points of the phase space with-
out specific pattern. Nearby points may be able to follow a chaotic orbit but only
for brief periods of time or iterations because they exhibit sensitive dependence on
initial conditions. We elaborate on this point next.

3.9.1 Sensitive Dependence

Consider again the logistic model

xn+1 = r xn(1 − xn).

Figure 3.14 depicts two orbits of the logistic model. One with initial population
P0 = 0.1 and one with initial condition Q0 = 0.10001. At the beginning of the
iterative process, the orbit of Q0 follows that of P0 quite closely but, eventually, they
start to diverge after a few iterations.

The observed divergence of the two nearby orbits in Fig. 3.14 is not due to numer-
ical error. It is, mainly, due to the intrinsic nonlinear behavior of the system, known
as sensitive dependence on initial conditions. The following definition formalizes
this concept.

Definition 3.3 Consider a discrete model

xn+1 = f (xn, λ).

An initial condition x0 is said to exhibit sensitive dependence on initial conditions
if there is a constant d > 0, and some integer k, and a neighborhood Nε(x0) = {x ∈
R : |x − x0| < ε} such that

| f k(x) − f k(x0)| ≥ d.

This definition simply says that two nearby orbits show sensitive dependence if
they separate some distance d after a certain number of iterations k. In general, the
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Fig. 3.14 Sensitive dependence in the logistic model. Two orbits, one with initial condition P0 =
0.1 and one with Q0 = 0.10001 evolve, for a short time, close to one another but they, eventually
diverge. This behavior is intrinsic to the logistic model and it is due to the nonlinearities in the
system. Parameter r = 4.0

closer the point x is to x0 the larger the number of iterations k will need to be in
order to observe the divergence in the orbits. The definition does not say anything,
however, about the nonlinearities in the model. In fact, consider for instance the
following model

xn+1 = r xn,

whose solution is xn = rnx0. Let r > 1 and let d be the initial separation of the initial
conditions, i.e., d = |x − x0|. Then

| f k(x) − f k(x0)| = |rnx − rnx0| = rn|x − x0| > |x − x0| = d.

Consequently, linear models that are governed by exponential growth, e.g.,
Malthusian growth models, can also exhibit sensitive dependence on initial condi-
tions. This statement does not contradict the previous assertion of the nonlinearities
being the source of the observed sensitive dependence on the logistic growth model.
The difference is in the fact that the orbit of the logistic growth model is bounded.

3.9.2 Lyapunov Exponents

Sensitive dependence and boundedness of orbits are the hallmarks of chaotic behav-
ior. But before we can define chaos in more technical terms, we need to introduce
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first Lyapunov exponents as a more precise measurement of sensitive dependence on
initial conditions. The measurement is based on calculating the average separation
rate of orbits with nearby initial conditions.

Consider again the general discrete model

xn+1 = f (xn, λ).

Let x1 be an initial condition and y1 be a nearby initial condition, i.e., y1 ≈ x1.
After one iteration of the model, we have x2 = f (x1) and y2 = f (y1). The derivative
of f at x1 can be calculated as

y2 − x2 ≈ f ′(x1)(y1 − x1),

which implies
|y2 − x2| ≈ | f ′(x1)||y1 − x1|.

It follows that the separation between the two new points, y2 and x2 is, approxi-
mately, given by | f ′(x1)|. Similarly, after two iterations

|y3 − x3| ≈ f ′(x2)(y2 − x2) ≈ f ′(x2) f ′(x1)(y1 − x1),

which leads to
|y3 − x3| ≈ | f ′(x2) f ′(x1)||y1 − x1|.

Then the average separation rate per iteration is A = | f ′(x2) f ′(x1)| 1
2 , while the

separation rate after two iterates is A2 = | f ′(x2) f ′(x1)|.
In general, after n iterations, we get

|yn+1 − xn+1| ≈ | f ′(xn) f ′(xn−1) . . . f ′(x1)||y1 − x1|.

Hence, we arrive at the following definition.

Definition 3.4 Let x1 be an initial condition with orbit {x1, x2, x3, . . .}, i.e., x2 =
f (x1), x3 = f (x2) = f 2(x1) . . . xn = f n−1(x1). The average separation rate per iter-
ation is given by the Lyapunov number:

L(x1) = lim
n→∞ | f ′(x1) f ′(x2) . . . f ′(xn)|

1

n . (3.21)

Assuming f ′(xk) = 0, for all k, and assuming also that the limit above exists,
then the Lyapunov exponent of the orbit starting at x1 is defined as

h(x1) = ln L(x1),

which can be rewritten as
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h(x1) = lim
n→∞

1

n

n∑

k=1

ln | f ′(xk)|. (3.22)

Lyapunov numbers or exponents allow us to identify sensitive dependence on
initial conditions. That is, if the Lyapunov number satisfies L(x1) > 1 then it implies
that nearby orbits will diverge from the original orbit {x1, x2, x3, . . .}. But L(x1) > 1
also implies h(x1) > 0. In practice, it is more common to use a positive Lyapunov
exponent as a measure of sensitive dependence. Let’s compute next the Lyapunov
exponents for some special orbits.

Example 3.7 (Equilibrium Points) Let xe be an equilibrium point of a general dis-
crete model xn+1 = f (xn, λ). Assume x1 to be an initial condition on the basin of
attraction of xe so that

xn = f n(x1)
−−−−→n → ∞ xe.

Then the Lyapunov exponent of the orbit starting at x1 satisfies

h(x1) = ln | f ′(xe)|.

Proof Continuity of f ′(x) implies

lim
n→∞ f ′(xn) = f ′

(
lim
n→∞ xn

)
= f ′(xe).

Continuity of ln implies

lim
n→∞ ln | f ′(xn)| = ln f ′(xe).

Thus, there must be an integer N (ε) such that

| ln | f ′(xk)| − ln | f ′(xe)|| < ε, ∀ k ≥ N (ε).

Then

ln | f ′(xe)| − ε < ln | f ′(xk)| < ln | f ′(xe)| + ε, ∀ k ≥ N (ε).

Considering the summation in Eq. (3.22), we get

1

n

n∑

k=1

ln | f ′(xk)| = 1

n

N (ε)∑

k=1

ln | f ′(xk)|
︸ ︷︷ ︸

An

+ 1

n

n∑

k=N (ε)+1

ln | f ′(xk)|
︸ ︷︷ ︸

Bn

.

Assume: n > N (ε) and all terms in Bn to be ε-close to ln f ′(xe). Since there are
n − N (ε) terms in Bn we get
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(
n − N (ε)

n

) [
ln | f ′(xe)| − ε

]
< Bn <

(
n − N (ε)

n

) [
ln | f ′(xe)| + ε

]
.

Adding An we get

An +
(
n − N (ε)

n

) [
ln | f ′(xe)| − ε

]
<

1

n

n∑

k=1

ln | f ′(xk)| < An +
(
n − N (ε)

n

) [
ln | f ′(xe)| + ε

]
.

(3.23)

Fixing ε fixes both N (ε) and the summation in An , so that

lim
n→∞ An = 0.

Furthermore,

lim
n→∞

n − N (ε)

n
= lim

n→∞
n + N (ε)

n
= 1.

Letting n → ∞ in Eq. (3.23), we get

ln | f ′(xe)| − ε ≤ lim
n→∞

1

n

n∑

k=1

ln | f ′(xk)| ≤ ln | f ′(xe)| + ε.

Finally, letting ε → 0+ we find the Lyapunov exponent to be

h(x0) = lim
n→∞

1

n

n∑

k=1

ln | f ′(xk)| = ln | f ′(xe)|.

�

We can now apply the previous result to a specific case.

Example 3.8 Consider the logistic map xn+1 = r xn(1 − xn). Let r = 2.5.We know
from previous work that an equilibrium point is given by

xe = 1 − 1

r
= 0.6.

Since f (x) = r x(1 − x) we get f ′(x) = r(1 − 2x) then f ′(xe = 0.6) = −0.5.
The Lyapunov exponent of a nearby orbit starting at x1 is

h(x1) = ln |0.5| = −0.6931,

which implies that nearby orbits converge, i.e., the equilibrium point xe = 0.6 is
stable.

Next, we consider periodic orbits.
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Fig. 3.15 Lyapunov
exponents of the logistic
growth model
xn+1 = r xn(1 − xn) over the
interval 1 < r < 4. Negative
values are indicative of
stability while positive
values imply sensitive
dependence on initial
conditions, i.e., divergence
of nearby orbits
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Example 3.9 (Periodic Orbits) Let {x1, x2, . . . , xk} be a period-k orbit. Then

h(x1) = 1

k

k∑

j=1

ln | f ′(x j )|.

Proof

h(x1) = lim
n→∞

1

n

[
ln | f ′(x1)| + . . . + ln | f ′(xk)|+
ln | f ′(x1)| + . . . + ln | f ′(xk)| + . . .

]

= lim
n→∞

1

n

{n
k

[
ln | f ′(x1)| + . . . + ln | f ′(xk)|

]}

= lim
n→∞

1

k

[
ln | f ′(x1)| + . . . + ln | f ′(xk)|

]

= 1

k

k∑

j=1

ln | f ′(x j )|.

�

The following theorem says that transient behavior does not influence the Lya-
punov exponent of an orbit.

Theorem 3.3 Let xn+1 = f (xn, λ) be a general discrete model. Let O(x1) = {x1,
x2, x3, . . .} be an orbit starting at x1 such that f ′(xk) = 0, ∀ k. Assume O(x1) con-
verges asymptotically to a period-k orbit O(y1) = {y1, . . . yk}. Then the Lyapunov
exponents of both orbits are the same, that is

h(x1) = h(y1) = 1

k

k∑

j=1

ln | f ′(y j )|.

Figure 3.15 shows the Lyapunov exponents of the logistic map xn+1 = r xn(1 −
xn) over the interval 1 < r < 4.
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The MATLAB code used to compute the Lyapunov exponents of the logistic
growth model of Fig. 3.15 is shown in the Appendix.

We have now arrived at the definition of chaotic behavior.

Definition 3.5 Let xn+1 = f (xn, λ) be a discrete model. Let O(x1) = {x1, x2,
x3, . . .} be a bounded orbit of the model. the orbit O(x1) is said to be chaotic if

(i) O(x1) is not asymptotically periodic, and
(ii) The Lyapunov exponent satisfies h(x1) > 0.

Thus, according to Fig. 3.15 the logistic map exhibits chaotic behavior for various
values of r , close to r = 4.

Example 3.10 Consider the simple model xn+1 = 2xn mod 1. Let x = 0.5. Direct
computations show that

h(x1) = lim
n→∞

1

n

n∑

k=1

ln | f ′(xk)| = lim
n→∞

1

n

n∑

k=1

ln 2 > 0.

This relatively simple model represents multiplication by 2 over the bounded
interval [0 : 1]. Yet, every orbit of the map that it is not asymptotically periodic is
chaotic.

3.10 Exercises

Exercise 3.1 Most banks now use continuously compounded interest, as it makes
programming the principal easier. The compound interest formula was given by

Pt = (1 + i)kt P0,

where P0 is the original principal, t is time in years, i = r/k with r the annual
interest rate and k the number of times interest is compounded per year, and Pt is
the principal at time t . Continuously compounded interest is computed by taking the
limit as k → ∞. Use your limits from Calculus to show that

Pt ≡ P(t) = lim
k→∞(1 + i)kt P0 = P0e

rt .

Exercise 3.2 (Annuity model) Ordinary annuity plans, such as 401(k) savings
plans, assume that an employee (and possibly employer) contribute regularly a fixed
amount, d, into an account that earns compound interest. If we assume a fixed interest
earned on the capital, then an annuity model is given by:

Pn+1 = (1 + i)Pn + d. (3.24)
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a. Assume an average monthly interest rate, i = r/12, where r is the annual rate.
Find the solution of (3.24) for any P0, i , and N , where N is the number of years of
investing in the annuity.

b. Suppose that an employee starts an annuity, P0 = 0 with a 401k plan that averages
r = 7.2% annually. If this person wants to accrue $500,000 after 20 years, howmuch
does this employee need to contribute monthly to obtain this goal?

c. As noted in the text, the interest rates can vary over time and the principal can be
tied to stock values.Write a brief description of how these ideas could be incorporated
into the model.

Exercise 3.3 Consider the 1D map:

xn+1 = |xn − 1|, x ∈ R.

(a) Find all fixed points and eventually fixed points.
(b) Find all the periodic points and eventually periodic points.
(c) What happens if x � 1 ? and x � 1 ? Hint: look at the cobweb diagram.

Exercise 3.4 Consider a discrete model of the form:

xn+1 = (1 + r)(xn − b)a + b, (3.25)

where a, b, and r are constant parameters. Make the following substitution:

Pn = xn − b,

into (3.25). The resulting simplified form has similarities to the discrete Malthusian
growth model, (3.1). Follow the methods from that derivation to find an exact closed
form solution for xn , for all values of n, based on the initial condition x0.

Exercise 3.5 (The Allee effect) The San Diego Zoo discovered that because their
flamingo population was too small, it would not reproduce until they borrowed some
from Sea World. Scientists have discovered that certain gregarious animals require
a minimum number of animals in a colony before they reproduce successfully. This
is called the Allee effect. Consider the following model for the population of a
gregarious bird species, where the population xn, is given in thousands of birds:

xn+1 = xn + λxn

(
1 − 1

16
(xn − 6)2

)
. (3.26)

(a) Find all fixed points and study their stability. Find the values of λ at which the
fixed points bifurcate and classify the type of bifurcations.

(b) Let λ = 0.2. Draw two cobwebbing orbits. One with x0 = 4.0 and one with
x0 = 4.3. Explain the differences between the two orbits.
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(c) Write a computer program to generate a bifurcation diagram. Make sure that
positive and negative initial conditions are used. Compare the diagram with that
of the logistic map. (Turn in the code and ONE plot of the bifurcation diagram).

(d) Give a brief biological description of what your results imply about this gregar-
ious species of bird.

Exercise 3.6 (Bistability in Population Genetics) Consider the cubic map

xn+1 = λxn − x3n , −2 ≤ xn ≤ 2, 0 ≤ λ ≤ 3. (3.27)

(a) Find all fixed points and study their stability. Find the values of λ at which the
fixed points bifurcate and classify the type of bifurcations.

(b) Let λ = 3. Draw two cobwebbing orbits. One with x0 = 1.9 and one with x0 =
2.1. Explain the differences between the two orbits.

(c) Find a period-2 point as a function of λ. Hint: Use the fact that f (x) = λx − x3

is odd. Study the stability of this period-2 orbit, i.e., find the range of values of
λ where the period-2 orbit is stable.

(d) Write a computer program to generate a bifurcation diagram. Make sure that
positive and negative initial conditions are used. Compare the diagram with that
of the logistic map. (Turn in the code and ONE plot of the bifurcation diagram).

Exercise 3.7 (Epilepsy) In this problem Pn represents the fraction of neurons of a
large neural network that fire at time tn . As a simple model of epilepsy, the dynamics
of the network can be described by

Pn+1 = 4CP3
n − 6CP2

n + (1 + 2C)Pn, (3.28)

where C is a positive number and 0 ≤ Pn ≤ 1.

(a) Find all fixed points and study their stability as a function of C .
(b) Graph Pn+1 as a function of Pn for C = 4 and study the dynamics as t → ∞

starting from an initial condition of P0 = 0.45.
(c) Generate a bifurcation diagram and discuss the results.

Exercise 3.8 (Gene and Neural Networks) The following 1D map plays a role in
the analysis of nonlinear models of gene and neural networks (Glass and Pasternack,
1978):

xn+1 = αxn
1 + βxn

, (3.29)

where α and β are positive parameters and xn > 0.

(a) Algebraically determine all fixed points.
(b) For eachfixed point find the range of values ofα andβ forwhich it exists, indicate

whether the fixed point is stable or unstable, and state whether the dynamics in
the neighborhood of the fixed point are monotonic or oscillatory.
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(c) Assume α = 1 and β = 1. Sketch the graph of xn+1 as a function of xn . Graph-
ically (cobwebbing) iterate the equation starting with initial condition x0 = 10.
What happens as the number of iterates approaches ∞ ?

(d) Assume α = 1 and β = 1. Algebraically determine xn+2 as a function of xn ,
and xn+3 as a function of xn . Based on these computations what is the algebraic
expression for xn+k ?What is the behavior of xn+k as k → ∞ ? This result should
agree with the answer to part (c).

Exercise 3.9 Assume X to be a finite set with n points, X = {x1, x2, . . . , xn}.
Assume also a discrete model of the form

xn+1 = f (xn, λ), f : X → X.

Prove that every point of X is eventually periodic.

Exercise 3.10 An employee has been investing in a 401(k) plan for quite sometime,
with about $1,000 per quarter. Currently, the plan is worth $100,000. The employee
wishes to retire in 10 years from now. It is reasonable to assume that the account can
earn about 6% annual interest compounded quarterly. (a) How much will be in the
account at retirement time? (b) How much should each quarterly deposit be in order
to accumulate $400,000 by retirement time ?

Exercise 3.11 Consider the logistic map

xn+1 = r xn(1 − xn), f : [0, 1] → [0, 1].

Suppose x0 ∈ [0, 1]. Obviously, if x0 = 0 or x0 = 1, then xn = f n(x0) = 0, n ≥
1. Are these the only points that get mapped to 0 in finitely many steps ? Find a
condition on r ∈ [0, 4] that implies this so. What happens if your condition on r fails
?

Exercise 3.12 Consider the discrete model

xn+1 = axn + bx2n + cx3n , x ∈ R.

Discuss the stability properties of the equilibrium point xe = 0 for a < 1, a = 1,
and a > 1.

Exercise 3.13 Find the equilibrium points for each of the following discretemodels:

(i) xn+1 = x3n + xn
2

, x ∈ [−1, 1];

(ii) xn+1 = − x3n + xn
2

, x ∈ [−1, 1];

(iii) xn+1 = xn(1 − xn)

2
, x ∈ [0, 1].
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Exercise 3.14 Find a continuous function f : (0, 1) → (0, 1) for a discrete model,
xn+1 = f (xn, λ), which does not have an equilibrium point.

Exercise 3.15 A model of population growth with harvesting can be written as

Pn+1 = r Pn + k,

where r is the growth rate and k represents the constant level for harvesting. Suppose
that the present size of a population is 5,500 and is growing by 10% per generation.
Harvesting occurs at a constant rate of 400 per generation. (a) What will the size of
the population be after 10 generations? (b) Howmany generations will it take for the
population to reach 10,000?

Exercise 3.16 Consider again the population growth model with harvesting

Pn+1 = r Pn + k.

Find a suitable substitution to convert this equation into a simpler form

xn+1 = axn .

Apply the solution to the Malthusian growth model to find a close form solution
for xn and, in turn, find one close form solution for Pn .

Exercise 3.17 Apply Newton’s method to compute an approximate value for
√
2.

Hint: consider the function f (x) = x2 − 2 and solve f (x) = 0.

Exercise 3.18 Consider the odd logistic model

xn+1 = r xn(1 − x2n ), f = r x(1 − x2), f : [0, 1] → [0, 1].

Show that there is a period-doubling bifurcation of the trivial equilibrium point
x = 0 at r = −1. Todo this, youmust verify that the conditions of the period doubling
bifurcation theorem are satisfied.

Exercise 3.19 Consider the following discrete model

xn+1 = r x cos x + cx2 − 2x3.

Describe the type of bifurcation that occurs at r = 1 in the cases (a) c = 1, (b)
c = 0. For both cases, identify the type of bifurcation (using appropriate theorems)
and sketch the bifurcation diagram, indicating stabilities.

Exercise 3.20 (Tent Map) Consider the tent map:

xn+1 = T (xn) =
{
2xn, xn ≤ 1/2
2(1 − xn), 1/2 ≤ xn
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(a) Find all fixed points and period-2 orbits and determine their stability.
(b) Find a period-3 point x0 < 0.5 such that T (x0) < 0.5 and T 2(x0) > 0.5.
(c) Show that the Tent map has infinitely many chaotic orbits.

Exercise 3.21 Consider again the tent map.

(a) Below is the graph of T (x). Locate the fixed points and use Cobewebbing with
x0 = 0.1 to determine their stability.

(b) Find an expression for T 2(xn). Sketch the graph of T 2(x) then determine the
period-2 points and their stability using Cobwebbing.
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Chapter 4
Continuous Models

This chapter examines phenomena that change continuously, primarily in time.
Examples are drawn from life sciences and engineering, including yeast populations,
predator-prey interactions, laser beams, oscillations of a quartz crystal, sensors of
magnetic fields, and pharmokinetic systems. These examples serve to illustrate that
continuous models are characterized by the same type of long-term solution sets as
the discrete ones, i.e., equilibrium and periodic points. The conditions for the exis-
tence and stability properties of these solution sets are revised. Qualitative methods,
e.g., phase portraits, are also employed to study the behavior of continuous models.

4.1 Introduction

Continuous modeling typically employs Ordinary Differential Equations, or ODEs
for short, to describe phenomena and data that vary continuously. In general, these
models contain (one ormany) state variables, which represent “point-measurements”
of the phenomenon, such as the densities of two species, the number of photons in a
laser beam, the voltage in an electronic circuit, or the magnetization state of a sensor.
These state variables are the dependent variables of the ODE; however, the model
can only contain one independent variable, typically time or a location in space.

4.2 Chemostat

A chemostat is a bioreactor in which a fresh medium (or nutrient) is added con-
tinuously, while culture liquid with left over microorganisms are also continuously
removed at the same rate. This process ensures the culture volume to remain constant.
The growth rate of the micororganisms is controlled by changing the rate at which
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Fig. 4.1 Diagram of an open system describing a chemostat

the medium is added into the bioreactor. Chemostats are used in bioengineering
research and industry aimed to accurately quantify the effect of nutrient concentra-
tion on differences in growth rates. In large breweries, for instance, chemostats are
used to maintain consistency of product. This can be achieved by growing a partic-
ular strain of brewer’s yeast inside a chemostat. Figure 4.1 shows the key elements
of a chemostat.

It turns out that discrete models are not well suited to describe yeast grow because
yeast grows continuously.However, we canmodify themodels fromChap. to include
small time-steps, which in the limit leads to a continuous model in the form of an
Ordinary Differential Equation or (ODE).

4.2.1 Continuous Model of Yeast Growth

Recall that a discrete Malthusian growth model has the form:

Pn+1 = (1 + r)Pn, (4.1)

where Pn is the population at time n and r is the per capita growth rate. Let Pn ≡ P(t)
and assume a time step of Δt , so Pn+1 ≡ P(t + Δt). If r is the per capita growth
rate per unit time, then Eq. (4.1) becomes:

P(t + Δt) = (1 + rΔt)P(t) or
P(t + Δt) − P(t)

Δt
= r P(t),
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Table 4.1 Monoculture yeast experiments for Saccharomyces cerevisiae

Time (hr) Volume Time (hr) Volume Time (hr) Volume

0 0.37 18 10.97 38 12.77

1.5 1.63 23 12.5 42 12.87

9 6.2 25.5 12.6 45.5 12.9

10 8.87 27 12.9 47 12.7

18 10.66 34 13.27

Taking the limit Δt → 0, the left-hand side becomes the definition of the deriva-
tive, so this equation reduces to:

d P

dt
= r P(t)

P(0) = P0,

(4.2)

which is the continuous Malthusian growth model. This is a first order linear differ-
ential equation, and its solution is:

P(t) = P0ert . (4.3)

For the early stages of growth of Saccharomyces cerevisiae, we consider only the
first 10 h (4 data points) of yeast data collected by Gause [1, 2], see Table 4.1. We
then show two methods for estimating the growth rate, r .

The solution (4.3) contains two parameters, P0 and r , that need to be fit. Using
the linear least squares best fit to the logarithm of data

ln(P(t)) = ln(P0) + r t,

we get the best continuous Malthusian growth model to be,

P(t) = 0.6045 e0.2690 t .

Alternatively,we canuse a nonlinear least squares best fit to the data byminimizing
the sum of square errors:

J (P0, r) =
4∑

i=1

(
Pd(ti ) − P0erti

)2
,

where ti are the times in the data and Pd(ti ) are the first 4 yeast volume data from
Table 4.1. The Appendix A.3.1. contains the MatLab code for performing this non-
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Fig. 4.2 A graph of the best fitting continuous Malthusian growth models through the first 10 h of
the Gause data for S. cerevisiae

linear fit and finding the parameters. With these data, the nonlinear least squares best
fit gives the best continuous Malthusian growth model,

P(t) = 0.6949 e0.2511 t ,

which is similar to fit using the logarithm of the data. Figure 4.2 shows a graph of
the second two parameter fits to the continuous Malthusian growth model.

4.2.2 Logistic Growth Model

The results of Fig. 4.2 indicate that a time-dependent Malthusian growth is clearly
not a good fit, especially for larger values of time where the exponential growth of
the Malthusian growth is way off the observed labeling off of the data set. In this
sectionwe derive amore appropriate model in the form of an autonomous differential
equation:

d P

dt
= f (P(t)) = f (P).

The Malthusian growth model represented by Eq. (4.2) contains the linear updat-
ing function f (P) = r P . Now, a Maclaurin series expansion of f (P) is

f (P) = f (0) + f ′(0)P + f ′′(0)
2! P2 + O (P3

)
,

where O (P3
)
means order P3.
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The chemostat problem is a closed system. When the population is at extinction,
the system is said to be at an equilibrium point Pe = 0. This equilibrium point yields,
f (0) = 0. Since the linear term, seeEq. (4.2), originates from theMalthusian growth,
we have

f ′(0) = r.

Furthermore, we observe that the population growth rate declines for larger popu-
lations, so the second order term in the series expansion must be negative. This term
is known as the intraspecies competition. Mathematically, this implies:

f ′′(0)
2! = − r

M
,

where r is from the Malthusian growth, and as we’ll see later, M is the carrying
capacity. Ignoring higher order terms of f (p), we obtain the logistic growth model:

d P

dt
= r P

(
1 − P

M

)
,

P(0) = P0.

(4.4)

The logistic growthmodel or Eq. (4.4) can be solved using separation of variables:

d P

P

(
1 − P

M

) = dt.

Expanding the left-hand side in terms of partial fractions:

1

P

(
1 − P

M

) = 1

r P
+ 1

Mr

(
1 − P

M

) .

Integrating:

∫ P

P0

1

r P
d P +

∫ P

P0

1

Mr

(
1 − P

M

)d P =
∫ t

t0

dt.

Assuming t0 = 0, we arrive (after a little algebra) at the closed-form solution:

P(t) = M P0

P0 + (M − P0)e−r t
. (4.5)
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Table 4.2 Monoculture yeast experiments for Schizosaccharomyces kephir

Time (hr) Volume Time (hr) Volume Time (hr) Volume

9 1.27 42 2.73 87 5.67

10 1 45.5 4.56 111 5.8

23 1.7 66 4.87 135 5.83

25.5 2.33

The solution given by Eq. (4.5) contains three parameters: P0, r , and M , which
must be fit to the yeast data. To do so, we consider the data set for em Saccharomyces
cerevisiae, see Table 4.1, and a new data set for Schizosaccharomyces kephir, see
Table 4.2.

The best unbiased fit to the data is obtained by minimizing the sum of square
errors (SSE) between the data, Pd(ti ), and the model, (4.5), where the SSE satisfies:

J (P0, r, M) =
N∑

i=0

(
Pd(ti ) − M P0

P0 + (M − P0)e−r ti

)2

.

Since the parameters appear nonlinearly in this formula, theminimization requires
a computational nonlinear solver to obtain the best fitting parameters.AppendixA.3.1
has the MatLab code for performing this nonlinear least squares best fit and finding
the parameters.

From the experimental data in Tables 4.1 and 4.2, the best fitting parameters for
S. cerevisiae and S. kephir are given by:

P0 = 1.2343, r = 0.25864, M = 12.7421,

and
P0 = 0.67807, r = 0.057442, M = 5.8802

with least SSE = 4.9460 and SSE = 1.3850, respectively. These results lead to the
best fitting solutions:

Psc(t) = 12.742

1 + 9.323 e−0.2586t
and Psk(t) = 5.880

1 + 7.672 e−0.05744t
. (4.6)

Figure 4.3 shows the graphs of the data with the best fitting logistic growth yeast
models.
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Fig. 4.3 The graph on the left shows the data and best fitting logistic growthmodel for S. cerevisiae,
and the graph on the right is the same for S. kephir

4.3 Qualitative Analysis of Continuous Models

We now consider the qualitative analysis of a continuous model, described by a
general autonomous ODE

d P

dt
= f (P). (4.7)

As it was the case of discrete models, the qualitative analysis seeks to understand
the long-term behavior of solutions of Eq. (4.7), without having full knowledge of a
closed-form solution. In a similar manner to discrete models, the analysis starts by
computing the equilibrium points of the model. In the case of a continuous system,
equilibrium points correspond to no change in the system. Thus, they are found by
setting the derivative of P equal to zero:

f (Pe) = 0.

Observe that in the case of population dynamics this condition implies no growth.
For instance, in the logistic growth model, (4.4), the equilibrium points satisfy:

r Pe

(
1 − Pe

M

)
= 0,

which yields two solutions:

Pe1 = 0, Pe2 = M.

The first equilibrium point corresponds to extinction, while the second one is
essentially the carrying capacity of the environment. Notice the analogy of these two
equilibria with those of the discrete model.
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To study the local stability properties of an equilibrium point, let us consider a
small perturbation, δ(t), so that

P(t) = Pe + δ(t),

where ||δ(t)|| � 1.We now seek to understand how the perturbation evolves in time.
If it grows then the equilibrium point is deemed locally unstable. If it decays, then
the equilibrium point is stable. Substituting into Eq. (4.7), while expanding the right
hand side in a Taylor series we get:

dδ(t)

dt
= f (Pe) + f ′(Pe)δ(t) + O (δ(t)2) . (4.8)

Since Pe is an equilibrium, then f (Pe) = 0, and the linearization of the continuous
model Eq. (4.7) becomes (after omitting higher order terms):

dδ(t)

dt
= f ′(Pe)δ(t). (4.9)

We have then arrived at the following stability theorem.

Theorem 4.1 (Stability of 1DODE)Let f (P) be differentiable, then the local stabil-
ity of an equilibrium, Pe, for the one-dimensional ODE, (4.7), satisfies the following:

• If f ′(Pe) > 0, then locally the solution grows exponentially (positive eigenvalue)
and the equilibrium at Pe is unstable.

• If f ′(Pe) < 0, then locally the solution decays exponentially (negative eigenvalue)
and the equilibrium at Pe is stable.

• If f ′(Pe) = 0, then more information must be obtained to determine the stability
of the equilibrium at Pe.

The proof of this important theorem is available in standard ODE texts, such
as Guckheimer and Holmes [3] (Chap. 1), Strogatz [4] (Chap. 2), and Wiggins [5]
(Chap. 1). It uses the Taylor’s series, like (4.8), with the definition of stability to prove
this local behavior. The last point is critical for changing behavior or bifurcation in
an ODE, as some parameter changes and will be studied more in the next chapter.

Recall that the logistic growth model admits two equilibria are Pe1 = 0 and Pe2 =
M . The function and its derivative satisfy:

f (P) = r P

(
1 − P

M

)
, so f ′(P) = r − 2r P

M
,

where r > 0 is the Malthusian growth rate at low density and M is the carrying
capacity. At the extinction equilibrium, Pe1 = 0, we have f ′(0) = r > 0, which
makes this equilibrium unstable. At the carrying capacity equilibrium, Pe2 = M ,
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we have f ′(M) = −r < 0, which makes this equilibrium stable. These results sug-
gest that the differential equation governing the logistic growth model has an initial
exponential growth before moving smoothly toward its carrying capacity.

4.3.1 Direction Fields and Phase Portraits in 1D

Consider the following initial value problem

dy

dt
= f (t, y),

y(t0) = y0,
(4.10)

Observe immediately that the function f (t, y) is the slope of the solution, which
can be easily found by computing on a planar grid for (t, y). Available programs, e.g.,
dfield, typically generate arrows or small lines showing the direction of the solution.
The direction field or slope field is this graphical representation in the y versus
t plane with arrows showing the direction of the solution. Solutions of Eq. (4.10)
follow paths defined by the direction field.

Figure 4.4 shows the direction field for the best fitting logistic growth model for
S. cerevisiae. It has small lines indicating the slope of the solution in (t, P) and
plots various solutions using different initial conditions. The graph clearly shows all
solutions approaching toward the carrying capacity of 12.742.

Existence and uniqueness of solutions to the differential Eq. (4.10) is established
through the following theorem.

Fig. 4.4 The direction field
(computed using the
MATLAB code dfield) for
the logistic growth model for
S. cerevisiae
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Theorem 4.2 (Existence and Uniqueness) If f and ∂ f/∂y are continuous in a
rectangle R : |t − t0| ≤ a, |y − y0| ≤ b, then there is some interval |t − t0| ≤ h ≤
|a| in which there exists a unique solution y = φ(t) of the initial value problem
(4.10).

Theorem 4.2 guarantees that solution trajectories do not cross on a graph. Thus,
geometrically it is easy to trace the direction of the solution from any starting point
in the direction field.

The direction field of the autonomous differential equation,

dy

dt
= f (y), (4.11)

in the y − t plane is constant for each value of y. At equilibria, ye, the slope in
the direction field is zero, f (ye) = 0, represented by horizontal arrows. Between
equilibria, the direction field has only slopes with the same sign, f (y) < 0 or f (y) >

0. It follows that solutions monotonically go toward or away from equilibria. Thus,
the qualitative behavior of the autonomous differential equation is captured in a
1D-line or 1D-phase portrait, where equilibria are marked and solution directions
are noted with arrows pointing right or left.

To create a 1D-phase portrait for the differential equation, (4.11), one graphs
f (y). The projection of f (y) onto the y-axis provides the 1D-phase portrait, where
equilibria are marked by circles with f (ye) = 0. Arrows to the right are drawn for
f (y) > 0 and to the left for f (y) < 0. When arrows of the phase portrait point
toward an equilibrium, then it is stable and is indicated with a solid circle. When
arrows of the phase portrait point away from an equilibrium, then it is unstable and
is indicated with an open circle. When arrows of the phase portrait go in the same
direction through an equilibrium, then it is semi-stable and is indicated with a half
open circle.

The function for the logistic growthmodel is a parabola pointing down. Figure 4.5
shows the two equilibria, Pe1 = 0 and Pe2 = M with the function being positive

Fig. 4.5 The 1D phase
portrait of the logistic growth
model is the P-axis in this
figure. From the arrows on
this axis it shows the unstable
extinction equilibrium and
stable carrying capacity
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between these equilibria. Since the arrow between these equilibria moves to the right,
it is easy to see that the extinction equilibrium, Pe1 = 0, is unstable. The carrying
capacity, Pe2 = M , is stable, as the arrows to the right and left of this equilibrium
point toward the this point. It follows that any positive initial condition results in the
solution approaching in time to the carrying capacity.

4.3.2 Stable Manifold Theorem

In this sectionwe extend the qualitative analysis of one-dimensionalmodels to higher
dimensional systems. Let us start with an n-dimensional linear ODE:

ẋ = Ax, x ∈ R
n, (4.12)

where the matrix A has n eigenvalues with n (generalized) eigenvectors. Analytical
and computational methods to solve this type of equations can be found in Brauer
and Nohel [6] and Guckenheimer and Holmes [3]. Here, we provide a summary. The
fundamental solution set of the original model Eq. (4.12) is given by:

Φ(t) = eAt ,

which leads to the unique solution

φt (x0) = x(x0, t) = eAt x0.

The function Φ(t) is called the fundamental solution because it generates a flow:
eAt x0 : Rn → R

n , which gives all the solutions to Eq. (4.12). Specifically, the linear
subspaces spanned by the eigenvectors of A are invariant under the flow, φt (x0) =
eAt x0. The eigenspaces of A are invariant subspaces for the flow, φt (x0) = eAt x0.

The subspaces spanned by the eigenvectors are divided into three classes:

1. The stable subspace, Es = span{v1, . . . , vns },
2. The unstable subspace, Eu = span{u1, . . . , unu },
3. The center subspace, Ec = span{w1, . . . , wnc },

where v1, . . . , vns are the ns (generalized) eigenvectors whose eigenvalues have neg-
ative real parts, u1, . . . , unu are the nu (generalized) eigenvectors whose eigenvalues
have positve real parts, andw1, . . . , wnc are the nc (generalized) eigenvectors whose
eigenvalues have zero real parts. Clearly, ns + nu + nc = n, and the names reflect
the behavior of the flows on the particular subspaces with those on Es exponentially
decaying, Eu exponentially growing, and Ec doing neither.

Let us now consider the equivalent nonlinear autonomous problem

ẋ = f (x), x ∈ R
n, x(0) = x0. (4.13)
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Existence of Solutions
There exist unique solutions to the nonlinear system in some small neighborhood
of t = 0 near x0 provided adequate smoothness of f . A qualitative analysis follows
similar ideas and methods to those of one-dimensional models. That is, we start by
computing fixed points or equilibria of Eq. (4.13) by solving f (xe) = 0, which may
be nontrivial and allow only numerical solutions.

Stability
Assume that xe is a fixed point of Eq. (4.13), then to characterize the stability prop-
erties of the equilibrium, xe, one examines the linearization at xe, which is given by
the system:

˙δ(t) = D f (xe)δ(t), δ(t) ∈ R
n, (4.14)

where D f = [∂ fi/∂x j ] is the Jacobian matrix of the first partial derivatives of
f = [ f1(x1, . . . , xn), f2(x1, . . . , xn), . . . , fn(x1, . . . , xn)]T and δ(t) is a small per-
turbation of the equilibrium, i.e., x = xe + ξ with ξ � 1. Since Eq. (4.14) is also a
linear system of the form given by Eq. (4.12), then the linearized flow map near xe

is given by:
Dφt (xe)δ = et D f (xe)δ. (4.15)

Ideally, onewould like to decompose the space of flows at least locally (near a fixed
point) into the behaviors similar to the ones observed for the linear system. Figure 4.6a
provides a cartoon of the manifold extension for (4.13), decomposing the flows into
the stable subspace, W s , the unstable subspace, W u , and the center subspace, W c.
However, unlike the linear system, nonlinearities dominate when D f (xe) has zero
or purely imaginary eigenvalues, W c, so the primary stability theorems examine
flows only for hyperbolic fixed points. For hyperbolic fixed points, the Hartman-
Grobman Theorem [3, 7] guarantees local behavior near xe of (4.13) is similar to the
linearization (4.14), which is illustrated in Fig. 4.6b.

Definition 4.1 (Hyperbolic Fixed Point)When D f (xe) has no eigenvalueswith zero
real part, xe is called a hyperbolic or nondegenerate fixed point.

It follows that for the nonlinear ODE the behavior can only be defined locally, so
one defines the local stable and unstable manifolds.

Definition 4.2 (Local Stable and Unstable Manifold) Define the local stable and
unstable manifolds of the fixed point, xe, W s

loc(xe), W u
loc(xe), as follows:

• W s
loc(xe) = {x ∈ U |φt(x) → xe as t → ∞, and φt (x) ∈ U for all t ≥ 0},

• W u
loc(xe) = {x ∈ U |φt(x) → xe as t → −∞, and φt (x) ∈ U for all t ≤ 0},

where U ⊂ R
n is a neighborhood of the fixed point, xe.

These invariant manifolds, W s
loc(xe) and W u

loc(xe), provide nonlinear analogues
of the flat stable and unstable eigenspaces, Es and Eu of the linear problem. The
primary theorem is the Stable Manifold Theorem, which shows that W s

loc(xe) and
W u

loc(xe) are tangent to the eigenspaces, Es and Eu .
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ba

Fig. 4.6 a This figure illustrates the local manifolds for a nonlinear system (4.13) about an equilib-
rium at 0 with W s

loc(xe) stable, W u
loc(xe) unstable, and W c

loc(xe) neither. b This figure shows only
the stable and unstable manifolds of the Stable Manifold Theorem, where x̂ is a hyperbolic fixed
point

Theorem 4.3 (Stable Manifold Theorem) Suppose that ẋ = f (x) has a hyperbolic
fixed point, xe. Then there exist local stable and unstable manifolds, W s

loc(xe) and
W u

loc(xe), of the same dimensions, ns and nu, as those of the eigenspaces, Es and
Eu, of the linearized system and tangent to Es and Eu at xe. W s

loc(xe) and W u
loc(xe)

are as smooth as the function, f .

The proof of this theorem is found in several texts on ODEs [7, 8] and plays a
central role in studying continuous dynamical systems. As noted earlier, this theorem
avoids discussion about a center manifold being tangent to Ec, confining the results
to hyperbolic fixed points. However, the center manifold often relates to studies in
bifurcation theory, which is covered in the next chapter.

The local invariant manifolds can be extended to global analogues, which can
have profound effects on the behavior of the ODE. The global stable manifold, W s ,
follows points in W s

loc(xe) flow backwards in time:

W s(xe) =
⋃

t≤0

φt (W s
loc(xe)).

The global unstable manifold, W u , follows points in W u
loc(xe) flow forward in time:

W u(xe) =
⋃

t≥0

φt (W u
loc(xe)).

Existence and uniqueness ensures that two stable (unstable) manifolds of distinct
fixed points, x1e, x2e, cannot intersect. However, intersections of stable and unstable
manifolds of distinct fixed points or the same fixed point can occur. These intersec-
tions are often the source of complex dynamics, such as chaos.
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4.3.3 Phase Portraits

In this section we introduce the phase portrait as a method to visualize the solution
set of the following two-dimensional autonomous ODE model:

dx1
dt

= f1(x1, x2), (4.16)

dx2
dt

= f2(x1, x2).

Such portraits are generated by projecting solution trajectories, (t, x(t), y(t))
onto the (x, y) phase plane with arrows (small lines) showing the direction of flows.
Mathematical software such asMaple, Pplane,MATLAB, andXPPAUT, can produce
these portraits with built-in routines to generate phase portraits.

According to the Stable Manifold Theorem in 2D, there are three generic cases:

• Stable (or Unstable) Node, where the equilibrium has two negative (positive)
eigenvalues.

• Stable (or Unstable) Focus or Spiral, where the equilibrium has two complex
eigenvalues with negative (positive) real parts.

• Saddle Node, where the equilibrium has one negative and one positive eigenvalue.

Figure 4.7 shows some representative examples from 2D linear ODEs of the
form (4.12). Since they are generic cases, it means that they occur most frequently in
2D models. A single model can produce many of these portraits simply by varying
a single parameter, which is usually known as the bifurcation parameter.

A center manifold corresponds to the particular case where an equilibrium of
Eq. (4.13) has eigenvalues with zero real part. When this happens in a model, the
system experiences the highest sensitivity since small perturbations can lead to dras-
tically different behavior. The 2D system (4.12) with a zero eigenvalue results in the
degenerate casewhere there is a line of equilibria. This reflects the boundary between
problems with stable or unstable nodes and ones with a saddle node. When the 2D
system (4.12) has purely imaginary eigenvalues, then the phase portrait is concentric
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Fig. 4.7 a This phase portrait shows a generic stable node. b This phase portrait shows a generic
unstable focus or spiral. c This phase portrait shows a generic saddle node
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Fig. 4.8 Trace-Determinant stability plane

ellipses about the equilibrium. This is the boundary between the equilibrium being
asymptotically stable (stable focus) and being unstable (unstable spiral). There are
a number of other nongeneric cases, such as equal eigenvalues, but they have min-
imal effects on the behavior of the mathematical model, but have other interesting
mathematical behaviors.

All the different possibilities of real and complex eigenvalues for the 2D linearized
ODE (4.16) are controlled by the values of tr(J ) and det(J ), where J = D f (xe)

from (4.14). Letting Δ = (tr(J ))2 − 4 det(J ), we can use the tr(J ) and det(J ) to
visualize all possible stability properties through the “trace-determinant stability
plane” of Fig. 4.8. Many references [9–11] provide a complete set of possible 2D
phase portraits for (4.12).

The qualitative analysis of (4.16) continues geometrically by the introduction of
nullclines to better visualize the behavior in the 2D phase plane. Nullclines of the
nonlinear system show geometrically where equilibria exist and divide the region
into sections with similar flows.

Definition 4.3 (Nullclines)Nullclines for (4.16) are the curves in the 2D phase plane
when either

f1(x1, x2) = 0 or f2(x1, x2) = 0.

The curve for f1(x1, x2) = 0 shows all points in the phase plane where solutions are
vertical or trajectory flows are only in the x2-direction. Similarly, when f2(x1, x2)
= 0, solutions are horizontal or trajectory flows are only in the x1-direction.

Geometrically, equilibria occur where the separate nullclines intersect, since
f1(x1, x2) = f2(x1, x2) = 0. Furthermore, the nullclines divide the phase plane into
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regions where the flows for the solutions of (4.16) are monotonic in x1 and x2.
Examples of this geometric analysis are discussed in the mixed competition model
section.

4.4 A Laser Beam Model

The term laser is an acronym for light amplification by stimulated emission of
radiation and is a device that emits light through optical amplification. The theoretical
foundations for a laser were developed by Einstein on electromagnetic radiation [12].
A laser consists of an activematerial or gain medium bound by twomirrors, all placed
inside a cavity. Figure 4.9 shows a solid-state laser, where a synthetic ruby crystal
acts as the gain medium, which is stimulated by flashes generated from a high-voltage
power supply. These photons stimulate electrons in ruby atoms to a higher energy
level. Subsequently, the electrons return to their ground state releasing coherent light
through spontaneous emission of radiating energy, which is readily focused to a
narrow beam.

The emitted photons travel at the speed of light in themediumandmay collidewith
already excited atoms, producingmore photons in a stimulated emission process. This
process yields multiple photons, amplifying the light. The mirrors allow photons to
continue bouncingback and forth.But a partialmirror (labeled 95% inFig. 4.9) allows
some photons to escape in a very concentrated beam of powerful laser light. The first
ruby laser was built in 1960 byMaiman at Hughes Research Laboratories [13], based
on theoretical work by Townes and Schawlow [14].

A mathematical model derived by Haken [15] has the form

dn

dt
= GnN − kn, (4.17)

where n(t) is the number of photons in the laser field, G > 0 is a parameter that
measures the gain in the medium, N (t) is the number of excited atoms, and k > 0 is
the typical lifetime of a photon. An excited atom emits a photon, dropping to a lower
energy level. This is modeled by

N (t) = N0 − αn,

Fig. 4.9 A solid-state laser,
also known as a ruby laser.
Source Wikipedia
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where N0 is the number of excited atoms, which are assumed constant in the absence
of the pump. This relation indicates that the number of excited atoms decreases
linearly, rate α > 0, with the number of photons in the field. Substituting N (t) into
Eq. (4.17) yields a mathematical model for the laser beam

dn

dt
= (G N0 − k)n − αGn2, (4.18)

which is a quadratic model, like the logistic growth model (4.4). It follows that the
qualitative analysis of these models are the same.

4.4.1 Equilibria for Laser

Equilibria of the laser model (4.18) satisfy:

(G N0 − k)n − αGn2 = 0, so ne1 = 0 or ne2 = G N0 − k

αG
.

The first equilibrium point, ne1 = 0, corresponds to the absence of photons being
stimulated, i.e., there is no stimulated emission of energy and the laser systembehaves
as a standard light. When N0 > k/G, the second equilibrium point, ne2 , corresponds
to sufficient stimulus of energy, leading to a laser beam.

Consider the quadratic function

f (n) = (G N0 − k)n − αGn2, where f ′(n) = (G N0 − k) − 2αGn.

This produces a parabola pointing down for all positive parameters.When N0 > k/G,
then ne2 = G N0−k

αG = M > 0 produces the equivalent 1D-phase portrait of Fig. 4.5,
where ne2 is a stable equilibrium (with ne1 unstable). When N0 = k/G, the two
equilibrium points merge together (threshold), and the vertex of the parabola occurs
at the origin (semi-stable). When N0 < k/G, there is insufficient stimulus energy
and the parabola intersects the negative axis for ne2 , becoming unstable (with ne1
stable). Linearization at ne1 = 0 gives

f ′(0) = G N0 − k,

and stability of this equilibrium depends on the sign of f ′(0), negative being stable.
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Fig. 4.10 Direction field for
the mathematical model
(4.18) of a solid-state laser
device. Parameters are: the
gain, G = 0.1; the number of
excited atoms, N0 = 100; the
typical lifetime of a photon,
k = 1; the rate atoms are lost,
α = 40. The two equilibria
are ne1 = 0 (unstable) and
ne2 = (G N0 − k)/(αG)

(stable)
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4.4.2 Visualization of Laser Model

This quadratic laser model has isomorphic graphs to the logistic growth model, so
the laser model direction field is similar to Fig. 4.4. Figure 4.10 shows the direction
field for the model (4.18), which is readily generated by software packages, such as
Maple’s DEplot or the MatLab’s dfield [16]. The solid lines in this figure show
representative solution curves from numerical integration of the model.
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Fig. 4.11 Bifurcation diagram of a laser beam model as N0 varies. Other parameters are the same
as in Fig. 4.10. The zero equilibrium, ne1, is stable (solid line) when N0 < k/G and unstable for
N0 > k/G. The nontrivial (laser state) equilibrium state, ne2, is unstable when N0 < k/G and
stable for N0 > k/G. At N0 = k/G a change of stability occurs in what is known as a transcritical
bifurcation
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The equilibria, ne1 and ne2 , vary with the parameters in the model. The solution
trajectories are basic S-shaped curves which vary in steepness with the parameters.
However, it is the equilibria and their stability that are most significant in the quali-
tative behavior. Figure 4.11 shows ne1 and ne2 as functions of the parameter N0 and
gives the their stability. This type of plot is known as a bifurcation diagram. Solid
lines indicate stable equilibrium points, while dashed lines depict unstable equilib-
rium points. Chapter will present greater details on the basic principles of bifurcation
theory.

4.5 Two Species Competition Model

Let x(t) and y(t) represent two species assumed to evolve according to the logistic
growth model, which we write in polynomial form:

dx

dt
= a1x − a2x2

dy

dt
= b1y − b2y2,

where ai > 0 and bi > 0. Each of these species satisfies a solution of the form given
by Eq. (4.5). If we now include the negative effects of interspecies competition, the
previous set of equations yields a two species competition model:

dx

dt
= a1x − a2x2 − a3xy = f1(x, y),

dy

dt
= b1y − b2y2 − b3yx = f2(x, y),

(4.19)

where ai > 0 and bi > 0. This time the system of ODEs does not have, however, an
analytical solution. Nevertheless, we can infer the behavior of the solutions from a
qualitative analysis of the model Eq. (4.19).

4.5.1 Qualitative Analysis

We start the analysis by recognizing that, typically, two possible outcomes can arise
as a result of the two species competing for resources:

1. Competitive Exclusion—one species out competes the other and, as it reaches a
stable equilibrium, it becomes the only survivor.

2. Coexistence—both species coexist while reaching a mutually stable equilibrium.
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Existence of Equilibrium Solutions
Analysis begins by calculating the equilibrium points(xe, ye), of the system. This is
done by solving fi (xe, ye) = 0, i = 1, 2. That is

a1xe − a2x2
e − a3xe ye = 0,

b1ye − b2y2e − b3xe ye = 0.

Solving this system of equations, simultaneously, we find four equilibrium points.
One equilibrium point is the trivial equilibrium

P1(xe, ye) = (0, 0),

which corresponds to both species becoming extinct. In addition, there are two more
equilibrium points that correspond to carrying capacity equilibria:

P2(xe, ye) =
(

a1

a2
, 0

)
and P3(xe, ye) =

(
0,

b1
b2

)
,

where ye is at carrying capacity (when y survives) and xe is at carrying capacity
(when x survives), respectively. The fourth equilibrium point corresponds to coexis-
tence of the two species, which satisfies:

P4(xe, ye) =
(

a1b2 − a3b1
a2b2 − a3b3

,
a2b1 − a1b3
a2b2 − a3b3

)
,

where, generically, it can be assumed that a2b2 �= a3b3. Technically, either xe or ye

can be negative, depending on the choice of parameters. Nevertheless, we consider
only the biologically meaningful case in which the parameter values yield xe > 0
and ye > 0.

Stability Analysis
The local stability properties of the equilibrium points can be inferred from the
linearization of Eq. (4.21). This requires that we examine the spectrum of eigenvalues
of the Jacobian matrix evaluated at each of the equilibria:

J (xe, ye) =
(

a1 − 2a2xe − a3ye −a3xe

−b3ye b1 − 2b2ye − b3xe

)
. (4.20)

For the trivial equilibrium point we get:

J (0, 0) =
(

a1 −0

0 b1

)
.
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Similarly, the Jacobianmatrix evaluated at the second and third equilibrium points
are:

J

(
a1

a2
, 0

)
=
⎛

⎝
−a1 −a3

a1
a2

0 b1 − b3a1
a2

⎞

⎠ , J

(
0,

b1
b2

)
=
⎛

⎝
a1 − a3b1

b2
0

−b3
b1
b2

−b1

⎞

⎠ .

The spectrum of eigenvalues at these three equilibrium points is:

P1(0, 0) : λ1 = a1, λ2 = b1,

P2

(
a1
a2

, 0
)

: λ1 = −a1, λ2 = b1a2 − b3a1
a2

,

P3

(
0, b1

b2

)
: λ1 = −b1, λ2 = a1b2 − a3b1

b2
.

P1(0, 0) : λ1 = a1, λ2 = b1,

P2

(
a1
a2

, 0
)

: λ1 = −a1, λ2 = b1a2 − b3a1
a2

,

P3

(
0, b1

b2

)
: λ1 = −b1, λ2 = a1b2 − a3b1

b2
.

Since all parameters are positive, it follows that the extinction equilibrium point
is unstable. From a biological standpoint, this result implies that competition cannot
result in both species disappearing. One or both must survive. Thus, if b1a2 < b3a1,
then both eigenvalues of J (P2) are negative, so P2 is a stable sink. Alternative, if
b1a2 > b3a1, then one eigenvalue is positive and one is negative, so P2 is unstable, a
saddle point. Similarly, if a1b2 < a3b1 then P3 is a stable sink. Otherwise, if a1b2 >

a3b1 then P3 is unstable, a saddle point.
The eigenvalues at the fourth equilibrium point depend on all of the parameters

ai and bi , so each problem has to be studied on a case by case basis.

Example 4.1 Consider the competition model given by:

dx

dt
= 0.1 x − 0.01 x2 − 0.02 xy,

dy

dt
= 0.2 y − 0.03 y2 − 0.04 xy.

The four equilibrium points are found to be:

P1 = (0, 0), P2 = (10, 0), P3 =
(
0,

20

3

)
, P4 = (2, 4).

The linearization yields the following Jacobian matrix:
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J (Xe, Ye) =
(
0.1 − 0.02Xe − 0.02Ye −0.02Xe

−0.04Ye 0.2 − 0.06Ye − 0.04Xe

)
(4.21)

Evaluating Eq. (4.21) at the extinction and carrying capacity equilibria, we get:

J (0, 0) =
(
0.1 0
0 0.2

)
, J (10, 0) =

(−0.1 −0.2
0 −0.2

)
, J

(
0, 20

3

) =
(− 0.1

3 0

− 0.8
3 −0.2

)
.

The form of all these matrices implies that the eigenvalues can be read from
the diagonal. The extinction equilibrium has two positive eigenvalues, giving an
unstable node, which is expected as low populations should grow in a Malthusian
manner. Both carrying capacity equilibria have two negative eigenvalues, giving
stable nodes. Since the monocultures satisfy logistic growth, we expect at least one
eigenvalue to be negative with its eigenvector pointed along the axis. This population
exhibits competitive exclusionwith the other eigenvalue being negative,making these
equilibria asymptotically stable. One population approaches its carrying capacity and
the other species goes extinct.

At the coexistence equilibrium, (xe, ye) = (2, 4), the Jacobian matrix satisfies:

J (2, 4) =
(−0.02 −0.04

−0.16 −0.12

)
,

which has eigenvalues λ1 = 0.0243 and λ2 = −0.1643 giving a saddle node.
Figure 4.12 shows the solutions near this coexistence equilibrium split between
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Fig. 4.12 This graph shows the direction field and nullclines (dashed lines) for Example 1 and
demonstrates competitive exclusion. Solutions tend to the carrying capacities of either species X
or Y
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Fig. 4.13 This graph shows the direction field and nullclines for Example 2 and demonstrates
cooperative coexistence. Solutions tend to the coexistence equilibrium

ones going to either of the stable equilibria. The stable manifold of this equilibrium
forms a separatrix dividing the region into solutions going to each of the competitive
exclusion equilibria. Note that all of these equilibria in this example are one of the
generic cases of the Stable Manifold Theorem.

Example 4.2 Consider the competition model given by:

dx

dt
= 0.1 x − 0.02 x2 − 0.01 xy, (4.22)

dy

dt
= 0.2 y − 0.04 y2 − 0.03 xy.

The linear analysis of this system is performed like the previous example by find-
ing the Jacobian matrix for the right side of (4.22) and evaluating it at the equilibria.
The Jacobian matrix satisfies:

J (Xe, Ye) =
(
0.1 − 0.04Xe − 0.01Ye −0.01Xe

−0.03Ye 0.2 − 0.08Ye − 0.03Xe

)
(4.23)

The extinction equilibrium has exactly the same linear analysis to the previous exam-
ple. At the carrying capacity equilibria, (Xe, Ye) = (5, 0) or (Xe, Ye) = (0, 5), we
evaluate (4.23) and obtain:

J (5, 0) =
(−0.1 −0.05

0 0.05

)
and J (0, 5) =

(
0.05 0

−0.15 −0.2

)
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which have eigenvalues with opposite signs giving saddle nodes. Figure 4.13 shows
solutions near these equilibria asymptotically approaching the carrying capacity of
X or Y on the axes, but moving away in the interior of the quadrant.When (Xe, Ye) =
(4, 2),

J (4, 2) =
(−0.02 −0.02

−0.12 −0.18

)
,

which has eigenvalues λ1 = −0.0062 and λ2 = −0.1938 giving a stable node.
Figure 4.13 shows all solutions in the interior of the first quadrant approaching
this stable equilibria, so when both species exist, they tend toward a cooperative
equilibria.

4.5.2 Fitting a Competition Model to Yeast Data

Gause [1, 2] also performed a third set of experiments, which combines yeast cultures
to examine competition between the species. Two repetitions were done of each
experiment, and data were combined and shifted to match described conditions.
Table 4.3 shows the results.

In this sectionwe attempt to fit a competitionmodel to the data shown in Table 4.3.
Thus, we need to estimate six unknown parameters, ai and bi , i = 1, 2, 3. and two
initial conditions, x0 and y0. We consider additional assumptions in order to reduce
the number of parameters that need to be fit. For instance, since in the absence of
the other yeast species, assuming the same experimental conditions, the competition
model (4.19) should match the monoculture logistic models given by Eq. (4.6). This
assumption implies that the rate constants, a1, a2, b1, and b2, derive from fitting the
monoculture logistic growth data of Tables 4.1 and 4.2. That is:

a1 = 0.25864, a2 = 0.020298, b1 = 0.057442, and b2 = 0.0097687.

Table 4.3 Competition yeast experiments with S. cerevisiae and S. kephir

Time (hr) 0 1.5 9 10 18 18 23

Vol
(S. cerevisiae)

0.375 0.92 3.08 3.99 4.69 5.78 6.15

Vol
(S. kephir)

0.29 0.37 0.63 0.98 1.47 1.22 1.46

Time (hr) 25.5 27 38 42 45.5 47

Vol
(S. cerevisiae)

9.91 9.47 10.57 7.27 9.88 8.3

Vol
(S. kephir)

1.11 1.225 1.1 1.71 0.96 1.84
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In this way, we have already reduced the total number of fitting unknowns to four:
two parameters, a3 and b3, which represent the interspecies competition coefficients,
and two initial conditions, x0 and y0. To estimate these four unknowns, we minimize
the following SSE formula:

J (a3, b3, x0, y0) =
N∑

i=0

((
xd(ti ) − x(ti ; a3, x0)

)2 + (
yd(ti ) − y(ti ; b3, y0)

)2
)2

,

(4.24)
where xd(ti ) and yd(ti ) are the data for S. cerevisiae and S. kephir, respectively. The
corresponding solutions to Eq. (4.19) at times ti are x(ti ; a3, x0) and y(ti ; b3, y0)
where these numerical solutions depend on a3, x0, b3, and y0. The algorithm is
initiatedwith a reasonable guess to the parameters and initial conditions. A numerical
ODE solver is applied to the model Eq. (4.19) and inserted into the SSE formula
(4.24). Finally a nonlinear minimizing program is used on the SSE to find the best
fitting parameters and initial conditions.

The Appendix A.3.2 provides details for implementation of this computer algo-
rithm with this two yeast species competition model. The MatLab code gives the
best fitting interspecies competition parameters for the competition model with:

a3 = 0.057011 and b3 = 0.0047576

and initial conditions:

x(0) = 0.41095 and y(0) = 0.62578.

The least sum of square errors is 9.312. We then arrive at the following best fit
competition model for Gause mixed culture data:

dx

dt
= 0.25864 x − 0.020298 x2 − 0.057011 xy,

dy

dt
= 0.057442 y − 0.0097687 y2 − 0.0047576 xy.

(4.25)

The best fitting competitionmodel is readily simulated and compared to theGause
mixed culture data.

Figure 4.14 shows numerical simulations of the fitted competition model with the
data.

The best fit model Eq. (4.25) has four equilibrium points: extinction, P1(0, 0),
carrying capacity, P2(12.742, 0) or P3(0, 5.8802), and coexistence, P4(10.257,
0.88482). A linearization analysis (left as an exercise) yields the following spec-
trum of eigenvalues of the Jacobian matrix:
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Fig. 4.14 Simulations of a two-species competition model fitted for S. cerevisiae and S. kephir
mixed culture data

P1(0, 0) : λ1 = 0.25864, λ2 = 0.05744,

P2(12.742, 0) : λ1 = −0.25864, λ2 = −0.00318,

P3(0, 5.8802) : λ1 = −0.0766, λ2 = −0.0574,

P4(10.257, 0.88482) : λ1 = −0.2199, λ2 = 0.00301.
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Fig. 4.15 Long-term numerical simulations of a two-species competition model reveal that, over
long periods of time, species S. cerevisiae dies out while S. kephir survives
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It follows that P1 is unstable (as expected), J (P2) and J (P3) have both negative
eigenvalues, so they are stable. J (P4) has one negative eigenvalue and one positive
eigenvalue, so P4 is a saddle point. The eigenvector associatedwithλ1 is tangent to the
one-dimensional separatrix, which connects to the extinction equilibrium separating
the first quadrant into regions, which are attracted to one of the two carrying capacity
equilibria, where one species goes extinct.

Figure 4.15 shows a longer term series simulation of the best fitting competition
model Eq. (4.25). The culture of S. cerevisiae initially grows very rapidly because
the saddle node has a fairly strong negative eigenvalue, attracting solutions toward
the coexistence equilibrium. However, it eventually dies out. On the other hand, the
culture of S. kephir grows slower but, in the long-term, it possesses a competitive
advantage, which is very common among similar species.

4.6 Predator-Prey Model

In the 1920s, Vito Volterra began to study the population of sharks, which typically
prey on small fish such as sardines and tuna. It can be said that Volterra’s work, and
book [17], A Mathematical Theory of the Struggle for Life led to the beginning of the
field of Mathematical Ecology. Since sharks are, obviously, predators, and sardines
or tuna are prey, their encounters are known as predator-prey interactions. Nowadays,
many other species are known to interact with one another in a predator-prey manner.
For instance, lynx are highly specialized predators that depend on one type of prey,
hares, for survival. In this section, we introduce predator-prey models as a mean to
describe the life-cycle of many animals as they compete for survival.

4.6.1 Sharks and Food Fish

Figure 4.16 showcases the predator-prey fluctuations between populations of sharks
and those of tuna.

Fig. 4.16 Shark and tuna interactions [18]
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Our goal is to derive a mathematical model that describes these interactions. Let
us choose tuna as the prey, and make two modeling assumptions.

1. Population of sardines or tuna are usually kept down exclusively by sharks.
2. Population of sharks is at the limit of its food supply, and is kept in check by the

lack of tuna.

4.6.2 Lotka-Volterra Model

The first version of the predator-prey model was published by Lotka [19, 20]. In that
work, Lotka was able to show that his model can reproduce the periodic cycle that
is commonly observed in the interaction of the species, as is shown in Fig. 4.16. A
few years later, Volterra [21] introduced a similar model to explain the fluctuations
in the population of fish, e.g., sharks. Nowaday, the combined efforts have led to the
Lotka-Volterra predator-prey model, which can be derived based on first principles.

Let x(t) represent the population of food fish (tuna), and let y(t) represent the
number of predators (sharks). Predation is modeled by assuming random contact
between the species in proportion to their populations with a fixed percentage of
those contacts resulting in death of the prey species. This is modeled by a negative
term, −a2x(t)y(t). Thus, the fish growth model is:

dx(t)

dt
= a1x(t) − a2x(t)y(t).

The primary growth for the shark population depends on adequate nutrients from
predation on food fish. This growth rate is similar to the death rate for the fish
population, b2y(t)x(t).Without foodfish, the shark population declines in proportion
to its own population, −b1y(t). Thus, the simplified growth model for the shark
population is:

dy(t)

dt
= −b1y(t) + b2y(t)x(t).

Combining these last two sets of equations, we arrive at the following predator-
prey model for sharks and food fish:

dx(t)

dt
= a1x(t) − a2x(t)y(t) = f1(x, y),

dy(t)

dt
= −b1y(t) + b2y(t)x(t) = f2(x, y).

(4.26)

Existence of Equilibrium Points
We look for equilibrium points, (xe, ye), by solving, simultaneously, f1(x, y) = 0
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and f2(x, y) = 0, which yields two equilibrium points: P1 which corresponds to
extinction and P2, which corresponds to coexistence:

P1(xe, ye) = (0, 0) and P2(xe, ye) =
(

b1
b2

,
a1

a2

)
,

It is interesting that the nonzero equilibrium for fish, xe, depends only on the
parameters governing the shark population, while the nonzero shark equilibrium,
Le, depends only on the parameters governing the fish population.

Stability
The local stability properties of the equilibrium points can be obtained by studying
the eigenvalues of the Jacobian matrix:

J =
(

a1 − a2ye −a2ye

b2ye −b1 + b2xe

)
.

The spectrum of eigenvalues of the Jacobian matrix is:

P1(0, 0) : λ1 = a1, λ2 = −b1,

P2(12.742, 0) : λ1 = 0 + i
√

a1b1, λ2 = 0 − i
√

a1b1.

It follows that the trivial equilibrium, P1(xe, ye) = (0, 0), is a saddle node with
solutions exponentially growing along the x-axis and decaying along the y-axis.
The second equilibrium, P2(xe, ye), is a center, which suggests that the solution
of the predator-prey model contains a family of infinitely many periodic solutions
parameterized only by initial conditions. This last solution produces a structurally
unstable model. The model is structurally unstable because small perturbations
from the nonlinear terms could result in the solution either spiraling toward or away
from the equilibrium or possibly a completely different trajectory. Figure 4.17 shows
numerical simulations of the predator-prey model Eq. (4.26).

The orbits are periodic, so the solutions are integrated for one period to determine
the average value of the solutions.Assume a period of T , then the average populations
of fish and sharks satisfy:

x̄ = 1

T

∫ T

0
x(t)dt and ȳ = 1

T

∫ T

0
y(t)dt.

From Eq. (4.26), we write:

1

T

∫ T

0

x ′(t)
x(t)

dt = 1

T

∫ T

0
(a1 − a2y(t)) dt,

1

T
ln(x(t))

∣∣∣∣
T

0

= a1 − a2

T

∫ T

0
y(t)dt.
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The left hand side above is zero because x(T ) = x(0) from the assumption of
periodicity. This gives the average shark population:

1

T

∫ T

0
y(t)dt = ȳ = a1

a2
.

An almost identical argument gives the average fish population:

1

T

∫ T

0
x(t)dt = x̄ = b1

b2
.

It follows that the average population around any periodic orbit is given by the
equilibrium value:

(x̄, ȳ) =
(

b1
b2

,
a1

a2

)
.

The Lotka-Volterra model (4.26) is structurally unstable because of the center
node. However, the equilibrium is robust because all periodic orbits have the same
mean, the equilibrium.

4.7 Method of Averaging

The method of averaging is a useful tool in dynamical systems, where time-scales in
a differential equation are separated between a fast oscillation and slower behavior.
The fast oscillations are averaged out to allow the determination of the qualitative
behavior of an averaged dynamical system. The averaging method dates from pertur-
bation problems that arose in celestial mechanics, when Lagrange [22] formulated
the gravitational three-body problem as a perturbation of the two-body problem. The
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Fig. 4.17 Numerical simulations of the predator-preymodel associatedwith the interactionbetween
sharks and tuna. (Left) Time series solution. (Right) Phase portrait. Parameters are: a1 = 0.453,
a2 = 0.0205, b1 = 0.79, b2 = 0.0229
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Fig. 4.18 The logistic
growth model with seasonal
variation in growth rate is
shown with the averaged
solution
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validity of this method waited until Fatou [23] proved some of the asymptotic results.
Significant results, includingKrylov-Bogoliubov [24], followed in the 1930s,making
averaging methods important classical tools for analyzing nonlinear oscillations.

The method of averaging is applicable to systems of the form:

ẋ = ε f (x, t, ε), x ∈ U ⊂ R
n, ε � 1, (4.27)

where f : Rn × R × R
+ → R

n is Cr , r ≥ 1, bounded on bounded sets, and T -
periodic in t ; U is bounded and open. The associated autonomous averaged system
is given by:

ẏ = ε

T

∫ T

0
f (y, t, 0)dt = ε f̄ (y). (4.28)

The averaged system (4.28) is chosen to be easier to study, yet its properties should
reflect the dynamics of (4.27).

Example 4.3 Consider the logistic growth model with some seasonal variation:

ẋ = ε
(

x
(
1 − x

M

)
+ sin(ωt)

)
, x ∈ R, 0 < ε � 1.

When the seasonal growth is averaged over its period, then the averaged equation
satisfies:

ẏ = εy
(
1 − y

M

)
, y ∈ R.

Figure 4.18 shows a simulation of the seasonal growthmodel with the averaged logis-
tic growth model. The solution x(t) shows complicated dynamics. However, when
the oscillations are removed, the solution y(t) reduces to the standard logistic growth
model where a stable equilibrium occurs at ye = M with an unstable equilibrium at
ye = 0. The solution x(t) simply oscillates about the solution y(t).

The Method of Averaging is stated in the following theorem.
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Theorem 4.4 (Averaging Theorem) There exists a Cr change of coordinates x =
y + εw(y, t, ε) under which (4.27) becomes

ẏ = ε f̄ (y) + ε2 f1(y, t, ε),

where f1 is of period T in t. Moreover,

1. If x(t) and y(t) are solutions of (4.27) and (4.28) based at x0, y0, respectively, at
t = 0, and |x0 − y0| = O (ε), then |x(t) − y(t)| = O (ε) on a time scale t ∼ 1

ε
.

2. If p0 is a hyperbolic fixed point of (4.28) then there exists ε0 > 0 such that,
for all 0 < ε ≤ ε0, (4.27) possesses a unique hyperbolic periodic orbit γε(t) =
p0 + O (ε) of the same stability type as p0.

3. If xs(t) ∈ W s(γε) is a solution of (4.27) lying in the stable manifold of the hyper-
bolic periodic orbitγε = p0 + O (ε), ys(t) ∈ W s(p0) is a solution of (4.28) lying
in the stable manifold of the hyperbolic fixed point p0 and |xs(0) − ys(0)| =
O (ε), then |xs(t) − ys(t)| = O (ε) for t ∈ [0,∞). Similar results apply to solu-
tions lying in the unstable manifolds on the time interval t ∈ (−∞, 0].

More theoretical details and proofs for this theorem are found in standard texts of
ODEs, such asGuckenheimer andHolmes (Chap. 4 [3]), Hale (Chap. 5 [25]), Sanders
et al. [26]. Information on the stablemanifold and hyperbolic fixed points are covered
in Sect. 4.3.2. This theorem states that an equilibrium point of the averaged Eq. (4.28)
corresponds to a periodic orbit of the original model (solution x(t)).

The near unitary transformation, x = y + εw(y, t, ε), has w being T -periodic in
t . We show some details for the formulation of w(y, t, ε) and f1(y, t, ε). A Taylor
expansion of (4.27) gives this perturbation problem in standard form:

ẋ = ε f (1)(x, t) + ε2 f (2)(x, t, ε),

with f (1) and f (2) being T -periodic, x ∈ R
n , and ε � 1. Decomposing f (1) into its

mean and oscillating components gives:

f (1)(x, t) = f̄ (1)(x) + f̂ (1)(x, t).

Differentiating the near-identity transformation gives:

[
I + εDyw

]
ẏ + ε

∂w

∂t
= ε f̄ (1)(y + εw) + ε f̂ (1)(y + εw, t) + O (ε2) ,

so

ẏ = ε
[
I + εDyw

]−1
[

f̄ (1)(y + εw) + f̂ (1)(y + εw, t) − ∂w

∂t
+ O (ε)

]
.

We take w to be the antiderivative of the oscillatory part f̂ (1), ∂w
∂t = f̂ (1), then using

ε-expansions, we obtain:
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ẏ = ε f̄ (y) + ε2
[
Dy f (y, t, 0)w(y, t, 0) − Dyw(y, t, 0) f̄ (1)(y)

]+ O (ε3) ,

where f1(y, t, ε) is defined to be the ε terms with order greater than or equal to two.
The proof is completed using analytical tools, like Gronwall’s inequality, to prove
the solutions remain O (ε) close to each other.

4.7.1 Quasilinear ODE and Lagrange Standard Form

Manymathematical models begin as linear systems of ODEs, which are perturbed by
some small nonlinearity. This is observed in the models of several classic oscillatory
systems, which are studied in more detail later in this chapter.

Consider the initial value problem:

ẋ = A(t)x + εg(x, t, ε), x(0) = x0, (4.29)

where x ∈ R
n , A(t) is a continuous n × n matrix function and g(x, t, ε) is a suf-

ficiently smooth function of t and x . When ε = 0, Eq. (4.29) is a first order linear
system of differential equations.We assume thatΦ(t) is the fundamental matrix solu-
tion [6] of the unperturbed system (ε = 0), and y(t) satisfies y(0) = x0 and becomes
part of comoving (Lagrangian) coordinates with

x = Φ(t)y, so ẋ = Φ̇(t)y + Φ(t)ẏ.

Since x(t) solves the perturbed system above, we have

Φ̇(t)y + Φ(t)ẏ = A(t)Φ(t)y + εg(Φ(t)y, t, ε),

or
Φ(t)ẏ = (

A(t)Φ(t) − Φ̇(t)
)
y + εg(Φ(t)y, t, ε).

(Note if A is constant, Φ(t) = eAt .) Since Φ(t) is the fundamental matrix solution
of the unperturbed system, so Φ̇(t) = A(t)Φ(t), it follows that:

Φ(t)ẏ = εg(Φ(t)y, t, ε), equivalently ẏ = εΦ−1(t)g(Φ(t)y, t, ε).

This equation is said to have the Lagrange standard form and can be written without
loss of generality as

ẏ = ε f (y, t, ε),

which is the same form as our weakly nonlinear ODE given by (4.27). This version
of the standard form will be used in the next section.
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4.8 Linear and Nonlinear Oscillators

This section presents an overview of mathematical models for linear and nonlinear
oscillators. Linear oscillators are well studied and have their natural frequencies
independent of initial conditions and amplitude of oscillation. Thus, the oscillatory
behavior of a solution is similar for initial conditions close to each other. This is
a simplifying property that is broken by nonlinearity. A nonlinear oscillator can
have solutions, which depend on amplitude and that are sensitive in their long-term
behavior to initial conditions. This richness in solution dynamics make the study of
nonlinear oscillators a challenge.

4.8.1 Linear Oscillators

A general model for a linear oscillator can be written in the form

L(x) = 0,

where L is some linear operator acting on the state variable x . In fact, a linear
differential equation of the form

a2
d 2x

dt2
+ a1

dx

dt
+ a0x(t) = F(t) (4.30)

is used as a “universal” model of a linear oscillator system. In this formulation,
F(t) represents an externally applied driving force. Figure 4.19 shows a spring-mass
system that is usually studied in basic mechanics [27, 28] and a first course in ODEs
[9].

Newton’s second law of motion [27, 28] states that the mass of an object, m,
times its acceleration is equal to the sum of all forces acting on it. The object in
Fig. 4.19 is the mass, m, with its position being x , where it is assumed that the mass

Fig. 4.19 Mass-spring-
damping oscillator
system
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is in equilibrium at x = 0. We consider three forces acting on m. The first force is
a Hooke’s law spring, which dictates that the force the spring exerts on the mass is
proportional to the distance from equilibrium and given by

Fs(x) = −kx,

where k is a material-dependent constant that defines the stiffness of the spring.
The second force comes from friction or viscous damping. Typically, this is mod-

eled as being proportional to the velocity of the mass, so

Ff = −cv = −c
dx

dt
.

The third force considered is an external force, F(t). Combining these in Newton’s
Second Law give:

m
d 2x

dt2
= Fs + Ff + F(t) = −kx − c

dx

dt
+ F(t),

which readily becomes Eq. (4.30), with a2 = m, a1 = c, and a0 = k.
When there is no external force (F(t) = 0) and frictional forces are ignored (c =

0), this spring-mass model reduces to the simple harmonic oscillator:

m
d 2x

dt2
+ kx = 0. (4.31)

This second order ODE has eigenvalues:

λ = ±i

√
k

m
= ±iω0,

which has a solution of the form:

x(t) = A cos (ω0t + ϕ),

where A represents the amplitude of the oscillations, ϕ is the phase, and ω0 is the
undamped angular frequency. The period of the motion, T , and frequency, f , are

T = 2π

ω0
and f = 1

T
.

Note that the harmonic oscillator has only one frequency and that the period of the
motion is the inverse of the frequency. Furthermore, the frequency does not depend on
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Fig. 4.20 Modes of oscillation of a linear oscillator model (4.32)

the amplitude or initial conditions, but depends on the spring stiffness and magnitude
of the mass.

In practical applications, there is friction or damping, so c �= 0. This gives the
damped harmonic oscillator, mẍ + cẋ + kx = 0, which can be written in the form:

d 2x

dt2
+ 2ζω0

dx

dt
+ ω2

0x = 0, (4.32)

where
ζ = c

2
√

mk

is known as the damping ratio and ω0 =
√

k
m is defined as before. This model has

eigenvalues:

λ =
(
−ζ ±

√
ζ2 − 1

)
ω0.

With all positive coefficients in the characteristic equation, the eigenvalues must
all have negative real parts. This results in the three classic cases for the damped
harmonic oscillator, Eq. (4.32). Figure 4.20 illustrates the behavior of these cases for
the damped harmonic oscillator and adds the harmonic oscillator (ζ = 0).

(i) Overdamped: If ζ > 1, then the eigenvalues are negativewithλ1 < λ2 < 0,which
gives a solution of the form:

x(t) = c1eλ1t + c2eλ2t ,
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where c1 and c2 are arbitrary constants. Thus, the solution returns to its equilibrium
state x = 0 without oscillating with larger damping ratios returning faster to the
equilibrium state.

(ii) Critically damped: If ζ = 1, then λ = −ζω0 (repeated eigenvalue), which gives
a solution of the form:

x(t) = c1e−ζω0t + c2te−ζω0t .

Oscillations are still not possible, and the system converges to the trivial equilib-
rium, x = 0.

(iii) Underdamped: If 0 < ζ < 1, then the eigenvalues are two complex conjugate
roots λ = −ζω0 ± iω0

√
1 − ζ2, which has a solution of the form:

x(t) = Ae−ζω0t cos
(
ω0

√
1 − ζ2t + ϕ

)
.

The mass oscillates, but the oscillations die out and the system converges to the
trivial equilibrium, x = 0.

This section concludes with the application of an external driving force, so that
the driven harmonic oscillator model satisfies:

d2x

dt2
+ 2ζω0

dx

dt
+ ω2

0x = F(t)

m
. (4.33)

Specifically, we study the effects of applying a sinusoidal force of the form

F(t) = F0 cos (ωt).

This second order linear nonhomogeneous ODE model is readily solved with the
method of undetermined coefficients [9] (or alternately by variation of parameters
[9]). The resulting particular solution, x p(t), satisfies:

x p(t) = − (ω2 − ω2
0)

F0
m

(ω2 − ω2
0) + (2ζω0ω)2

cos (ωt) + (2ζω0ω) F0
m

(ω2 − ω2
0) + (2ζω0ω)2

sin (ωt),

which with a little bit of algebra, can be written in amplitude-phase form

x p(t) = F0

mω

√(
1 − ω2

0

ω2

)2

+ (2ζω0)2

cos (ωt − φ), (4.34)

where the phase φ is given by
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Fig. 4.21 Amplitude response in the steady-state solution of a sinusoidally forced linear oscillator
model (4.33)

φ = arctan

(
− 2ζω0ω

(ω2 − ω2
0)

)
.

The general solution, xg(t), to the forced linear oscillator Eq. (4.33) is expressed
as

xg(t) = xh(t) + x p(t),

where xh(t) is the homogeneous solution of the unforced system, F0 = 0, which
is governed by the damping ratio. This solution is known as the transient solution
because in all three cases where ζ > 0, xh(t) asymptotically approaches the trivial
equilibrium. For this reason, x p(t) is known as the steady-state solution. Figure4.21
shows the amplitude of the steady-state solution as a function of the relative fre-
quency ω/ω0, with various values of the damping ratio ζ. Observe that as ζ becomes
smaller, the peak in the amplitude response becomes larger. The location of the peak
approaches the relative frequency ω/ω0 = 1, where the denominator is minimized.
When ω/ω0 = 1 and ζ = 0, the undamped harmonic oscillator is in resonance , and
the particular solution, x p(t), is unbounded.

4.8.2 Conversion to a System of Differential Equations

Section 4.3.2 examines the first order linear system of ODEs given by Eq. (4.12)
and shows how the stability properties relate to the eigenvalues of the matrix A. An
nth-order scalar linear differential equation of the form

dn y

dtn
+ an−1

dn−1y

dtn−1
+ . . . + a1

dy

dt
+ a0y(t) = 0, (4.35)
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is readily transformed to ẋ = Ax with x ∈ R
n using a standard technique [9]. The

following sequence of substitutions is introduced:

x1 = y, x2 = dy

dt
, . . . , xn = dn−1y

dtn−1
,

so

ẋ1 = x2, ẋ2 = x3, . . . , ẋn−1 = xn,

ẋn = −a0x1 − a1x2− . . . −an−1xn.

It follows that

A =

⎛

⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 . . . 1
−a0 −a1 −a2 . . . −an−1

⎞

⎟⎟⎟⎟⎟⎠
.

Since (4.35) and (4.12) with A above are equivalent ODEs, the solutions of the
characteristic equation of (4.35) match the eigenvalues of A. It follows that the
behavior of the fundamental solution of (4.12) produces the same behavior as the
solution to (4.35) based on the Stable Manifold Theorem (Theorem 4.3).

Example 4.4 Consider the unforced linear oscillator model:

d 2y

dt2
+ 2ζω0

dy

dt
+ ω2

0 y = 0. (4.36)

Let

x1 = y, x2 = dy

dt
,

where x1 is the position and x2 is the velocity. Differentiating gives:

ẋ1 = dy

dt
= x2,

ẋ2 = d 2y

dt2
= −2ζω0

dy

dt
− ω2

0 y = −2ζω0x2 − ω2
0x1.

In matrix form with x = (x1, x2)T , this system is written:

ẋ = Ax =
(

0 1

−ω2
0 −2ζω0

)
x .

The characteristic equation for A is easily seen to satisfy:
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λ2 + 2ζω0λ + ω2
0 = 0,

which matches the characteristic equation for (4.32).
The equilibrium for this system is xe = (x1e, x2e)

T = (0, 0)T . Since the eigenval-
ues have negative real parts, the Stable Manifold Theorem 4.3 shows that only the
stable linear subspace, Es , exists for this example, implying all solutions asymptot-
ically approach (x1e, x2e)

T . With the techniques of Sect. 4.3.3, one can produce the
2D phase portrait for this example with the axes being the position, x1, and velocity,
x2. The overdamped case produces a stable node, the critically damped case gives a
stable improper node, and the underdamped case produces a stable focus or spiral,
where all cases show the solution trajectories approaching the equilibrium or origin.

Mathematicalmodels for nonlinear oscillators are, in general, much less amenable
to analysis. Finding closed form solutions for nonlinear ODEs is rare, occurring only
for special cases. However, there exist many ideas and methods from dynamical sys-
tems theory for obtaining qualitative behavior of these nonlinearODEs.Belowweuse
several classic nonlinear oscillators to illustrate key mechanisms and mathematical
tools for studying these oscillatory behaviors.

4.8.3 Duffing Oscillator

The Duffing oscillator is a well-known example of a nonlinear oscillator that serves
as a model for a periodically forced elastic beam. The canonical model is given by

ẍ + δẋ + βx + αx3 = γ cosωt, (4.37)

where x represents the deflections of the beam from a zero equilibrium, δ describes
damping strength, β and α are, respectively, the linear and nonlinear elastic prop-
erties of the beam, and γ cosωt represents a sinusoidal forcing term of strength γ.
Mathematically, this model differs from the forced linear harmonic oscillator (4.33)
with its cubic term; however, this can significantly affect the dynamics.

Figure 4.22 illustrates the experimental setup. The beam hangs fixed from one end
within a rigid frame, while the other end is deflected by the attraction force of two
magnets that are held fixed within the rigid frame. The entire rigid frame is subject
to a periodically driving force of amplitude γ and frequency w. The case of γ > 0
renders the model equations nonautonomous, and it can lead to significantly more
complicated behavior, e.g., chaos.

Unforced Duffing Oscillator
The unforced Duffing equation with no damping, i.e., γ = 0 and δ = 0, satisfies:

ẍ + βx + αx3 = 0.
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Fig. 4.22 Duffing oscillator.
Source Georgia Tech

If we multiply by the velocity term, ẋ , we obtain the total derivative:

ẋ(ẍ + βx + αx3) = d
dt

(
1
2 ẋ2 + 1

2βx2 + 1
4αx4

) = 0.

Integration shows that the term in parenthesis must be constant, C , so

H(x, ẋ, t) = 1
2 ẋ2 + 1

2βx2 + 1
4αx4 = C.

In Hamiltonian mechanics, a classical physical system is defined by a set of
canonical coordinates, (x, y). Hamilton’s equations define the time evolution of the
system by

ẋ = ∂H

∂y
and ẏ = −∂H

∂x
,

where the Hamiltonian, H(x, y, t), often corresponds to the total energy of the sys-
tem, which in a closed system is the sum of the kinetic and potential energy. By
taking the canonical coordinates to be the position, x , and velocity, y = ẋ , with
H(x, y, t) = H(x, y) defined by:

H(x, y) = 1
2 y2 + 1

2βx2 + 1
4αx4, (4.38)

we see that

ẋ = ∂H

∂y
= y and ẏ = ẍ = −∂H

∂x
= −βx − αx3,

so is a Hamiltonian function. Figure 4.23 shows the energy potential, H(x, y, t),
for an unforced Duffing oscillator with schematic solution trajectories and where
equilibria occur at the minima of these surfaces.
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Fig. 4.23 Energy potential,
H(x, y, t), for an unforced
Duffing oscillator with
schematic solution
trajectories. In the absence of
damping, δ = 0, energy is
conserved, and the system is
Hamiltonian with
H(x, y, t) = H(x, y). In the
presence of damping, δ > 0,
energy is dissipated, so
Ḣ(x, y, t) < 0 and the
system settles into an
equilibrium state

For no damping, δ = 0, energy is conserved. The Hamiltonian function is not
explicitly dependent of time, and solutions of the unforced Duffing Eq. (4.37) exist
on level curves of H(x, y) and are oscillatory.When β > 0 the Hamiltonian function
is a single-well potential, which leads to oscillations around a single equilibrium (see
Fig. 4.24a). For β < 0, the Hamiltonian is a double-well potential function, and the
system oscillates around two different equilibria (see Fig. 4.24c).

With damping, δ > 0, energy is dissipated, and the Hamiltonian function is time
dependent, H(x, y, t), and satisfies:

d H

dt
(x, y, t) = −δẋ2 = −δy2 ≤ 0. (4.39)

This implies that solution trajectories decrease along the surface of H(x, y, t) until
they converge to an equilibrium. For β > 0, there is only one equilibrium point, but
for β < 0, there are three equilibria (see Fig. 4.24b and d).

The qualitative behavior of the solutions begins with finding the equilibria. With
ẋ = y, the unforced Duffing oscillator (4.37) is written:

ẋ = y (4.40)

ẏ = −δy − βx − αx3.

Equilibria occur when ye = 0 and βxe + αx3
e = 0, so

xe = 0,±√−β/α.

For β/α ≥ 0, only the trivial equilibrium, (xe, ye) = (0, 0), exists, while for β/α <

0, there are three equilibria.
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Fig. 4.24 Phase portraits of solution trajectories for an unforced Duffing oscillator with parameter
α > 0. In a β > 0 and δ = 0, which yields a family of periodic solutions around the trivial equi-
librium (0, 0). In b β > 0 and δ > 0, thus damping causes the motion to decay towards zero. In c
β < 0 and δ = 0, leads to two equilibria and families of periodic oscillations. In d β < 0 and δ > 0,
in which case damping causes again decay of solution trajectories towards one of two nontrivial
equilibria. Which one is observed depends on initial conditions

To determine the local stability of the equilibria, we linearize (4.40) and compute
its Jacobian matrix:

DF(xe, ye) =
(

0 1
−β − 3αx2

e −δ

)
.

The characteristic equation is given by:

λ2 + δλ + β + 3αx2
e = 0.

For α > 0 with β > 0 and δ > 0, only the trivial equilibrium, xe = 0, exists, and
both eigenvalues have negative real part (stable node), so all solutions are locally
asymptotically stable. For α > 0 with β < 0 and δ > 0, the trivial equilibrium,
xe = 0, has eigenvalues with opposite signs (saddle node), so solutions are unstable.
However, the nontrivial equilibria, xe = ±√−β/α, have the characteristic equation:
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λ2 + δλ − 2β = 0,

which has both eigenvalues with negative real part (stable nodes), so again all solu-
tions are locally asymptotically stable. These arguments agreewith the phase portraits
seen in Fig. 4.24b and d.

If δ = 0 and β > 0, then the eigenvalues for xe = 0 are purely imaginary, so linear
analysis does not give stability though this case does result in a neutrally stable
equilibrium. Similarly, for α > 0 with β < 0 and δ = 0, the nontrivial equilibria
have purely imaginary eigenvalues and other means of analysis are required to show
these equilibria are neutrally stable. These properties are observed in Fig. 4.24a, c.
Chapter studies the richness in the behavior changes for this example as parameters
change, introducing the ideas of pitchfork and Hopf bifurcations.

A Hamiltonian function or energy function can provide a valuable tool for obtain-
ing global results for some ODEs. When the Hamiltonian function, H(x, y, t) satis-
fies:

(i) H(x, y, t) = 0 if and only if (x, y) = (0, 0),
(ii) H(x, y, t) > 0 and Ḣ(x, y, t) < 0 for (x, y) �= (0, 0),

then it is a Lyapunov function [5, 25] and theorems show that (xe, ye) = (0, 0) is
globally asymptotically stable. For the unforced Duffing oscillator with α > 0 and
β > 0, the Hamiltonian function, (4.38), clearly satisfies (i). From the derivative of
H(x, y, t) given in (4.39) and δ > 0, Condition (ii) also holds. The theory of Lya-
punov functions gives the unique equilibrium, (xe, ye) = (0, 0), is globally asymp-
totically stable for the unforced Duffing oscillator.

Weakly Forced Duffing Oscillator
A weakly forced Duffing oscillator [3] is derived from model (4.37) and written:

ẍ + ω2
0x = ε(γ cosωt − δẋ − αx3), (4.41)

where ω2
0 = β, which with x1 = x , x2 = ẋ , is written in system form:

ẋ1 = x2 (4.42)

ẋ2 = −ω2
0x1 + ε(γ cosωt − δx2 − αx3

1).

We could use the method from Sect. 4.7.1 to transform (4.42) into Lagrange standard
form. However, the cubic term complicates the analysis, so a related transformation,
the van der Pol transformation, which is based on the frequency of the forcing
function, is applied with the assumption that the natural frequency, ω0 is close to the
forcing frequency, ω2

0 = ω2 + εΩ . This invertible transformation is given by:

(
x1
x2

)
= Φ(t)

(
y1
y2

)
, where Φ(t) =

(
sinωt cosωt

ω cosωt −ω sinωt

)
.
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Note that replacing ω with ω0 above gives a fundamental solution to (4.42) with
ε = 0, which could be used in creating the Lagrange standard form.

With the van der Pol transformation, it follows that

(
ẏ1
ẏ2

)
= Φ−1(t)

[
−Φ̇(t)

(
y1
y2

)
+
(

x2
−ω2

0x1 + ε(γ cosωt − δx2 − αx3
1)

)]
,

(
ẏ1
ẏ2

)
= ε

ω

[
(−Ωx1 + γ cosωt − δx2 − αx3

1) cosωt
(Ωx1 − γ cosωt + δx2 + αx3

1) sinωt

]
, (4.43)

where x1 = y1 sinωt + y2 cosωt and x2 = ω(y1 cosωt − y2 sinωt). This ODE in
(y1, y2)T has the form of Eq. (4.27), which allows the Theorem of Averaging 4.4.

Expanding the right hand side of Eq. (4.43) with our expressions for x1 and x2, we
integrate over the period of the forcing function, 2π/ω, letting y1 and y2 be treated
as constant. The averaging process eliminates all of the trigonometric functions and
reduces the averaged system to:

ẏ1 = ε

2ω

[
−Ωy2 + γ − ωδy1 − 3α

4
(y21 + y22 )y2

]
+ O (ε2) , (4.44)

ẏ2 = ε

2ω

[
Ωy1 − ωδy2 + 3α

4
(y21 + y22 )y1

]
+ O (ε2) .

Sys. (4.44) is rewritten in polar coordinates with y1 = r cosφ and y2 = r sin φ, so
r2 = y21 + y22 and φ = arctan (y2/y1). This yields the following system:

ṙ = ε

2ω
[γ cosφ − ωδr ] + O (ε2) , (4.45)

r φ̇ = ε

2ω

[
Ωr + 3α

4
r3 − γ sin φ

]
+ O (ε2) .

Equilibria are found numerically by setting the right hand side of Sys. (4.45) to
zero and solving for (r,φ). The results are shown in Fig. 4.25 for various values of the
parameterα.Whenα = 0, the amplitude response exhibits a peak near the resonance
condition ω = ω0, as the nonlinear term vanishes, and the Duffing oscillator behaves
as a forced linear oscillator. The case α > 0 corresponds to a hardening beam, so the
amplitude response curves to the right. The opposite case, α < 0, corresponds to a
softening beam, where the amplitude response curves towards the left.

4.8.4 Van der Pol Oscillator

Another classic example of a nonlinear oscillator is the van der Pol oscillator [29].
This oscillator contains a nonlinear damping term, and it originally modelled the



130 4 Continuous Models

Fig. 4.25 Amplitude and frequency response of a weakly forced Duffing oscillator. Black lines
indicate stable equilibrium points, while red lines depict unstable equilibrium points. Parameters
are: ω0 = 1, εδ = 0.2 and εγ = 2.5

Fig. 4.26 The van der Pol
oscillator serves as a model
for a tetrode multivibrator
circuit, whose
current-voltage
characteristic, V = f (I ),
resembles a cubic function

I(t)

LI(t)

C

I(t)

f(I)

“tetrode multivibrator” circuit used in early commercial radios [30]. In addition, its
behavior simulates a tunnel diode in an electric circuit and has modelled other types
of natural oscillatory systems, such as neurons. The circuit is seen in Fig. 4.26.

The mathematical model for the van der Pol oscillator is:

ẍ − ε(1 − x2)ẋ + x = 0, (4.46)

which has the nonlinear damping term,−ε(1 − x2)ẋ . Letting ẋ = y, (4.46) becomes
the system:

ẋ = y

ẏ = −x + ε(1 − x2)y (4.47)
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Small Damping
As in Sect. 4.8.3, we apply the van der Pol transformation. This invertible transfor-
mation is given by:

(
x
y

)
= Φ(t)

(
u
v

)
, where Φ(t) =

(
sin t cos t
cos t − sin t

)
.

SinceΦ(t) gives a fundamental solution for the linearization of (4.47), it is equivalent
to the method from Sect. 4.7.1 transforming (4.47) into Lagrange standard form. It
follows that

(
u̇
v̇

)
= Φ−1(t)

[
−Φ̇(t)

(
u
v

)
+
(

y
−x + ε(1 − x2)y

)]
,

(
u̇
v̇

)
= ε

[
(1 − x2)y cos t
−(1 − x2)y sin t

]
, (4.48)

where x = u sin t + v cos t and y = u cos t − v sin t). This ODE in (u, v)T has the
form of Eq. (4.27), which allows the Theorem of Averaging 4.4.

The right hand side of Sys. (4.48) is expanded with the expressions for x and y,
and we average over t ∈ [0, 2π], letting u and v be treated as constant. The averaging
process eliminates all of the trigonometric functions and reduces the averaged system
to:

u̇ = ε

8

(
4 − (u2 + v2)

)
u + O (ε2) , (4.49)

v̇ = ε

8

(
4 − (u2 + v2)

)
v + O (ε2) .

Sys. (4.49) is rewritten in polar coordinates with u = r cosφ and v = r sin φ, so
r2 = u2 + v2 and φ = arctan (v/u). This yields the amplitude-phase equations:

ṙ = ε

8
r(4 − r2) + O (ε2) , (4.50)

φ̇ = 0 + O (ε2) .

IgnoringO (ε2) terms, we see the equilibria of Sys. (4.49) occur when the ampli-
tude equation, which is decoupled from the phase equation, satisfies ṙ = 0. Since
r ≥ 0, it follows that there are two equilibria, re1 = 0 and re2 = 2. In fact, the equi-
librium re2 = 2 corresponds to a limit cycle of the model Eq. (4.47). A limit cycle
is a periodic solution that appears isolated, i.e., not part of a family of solutions, in
phase space.

If we define

f (r) = ε

8
r(4 − r2), where f ′(r) = ε

8
(4 − 3r2),
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Fig. 4.27 Stable limit cycle
oscillation in a weakly
damped van der Pol
oscillator
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then stability of the trivial equilibrium and of the limit cycle are easily studied.
Evaluating at re1 = 0 and re2 = 2, we find

f ′(0) = ε

2
> 0, f ′(2) = −ε < 0.

It follows that the trivial equilibrium, re1 = 0, is unstable, while the limit cycle,
r2 = 2, is stable. Figure 4.27 shows a simulation of the model Sys. 4.47, where we
observe the stable cycle and solution trajectories approaching the limit cycle.

The equation in r from (4.50) without the O (ε2) term is solved explicitly by
either the separation of variables or Bernoulli’s method. Consider

ṙ = ε

8
r(4 − r2), with r(0) = r0,

then its solution is given by

r(t) = 2r0√
r20 + (4 − r20 )e

−εt
= 2 +

(
1 − 4

r20

)
e−εt + O (e−2εt

)
.

As expected, r → 2 as t → ∞, confirming the stability of the limit cycle. This shows
that the average method yields the amplitude of the oscillations remains constant
(slow variation), while moding out the fast sinusoidal oscillations.

Large Damping
In the van der Pol Eq. (4.46), the case of large damping occurs when ε � 1. Using
Liénard’s transformation,

y = ẋ

ε
− x + x3

3
,

we differentiate this transformation and use the van der Pol Eq. (4.46) to obtain the
following system:
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Fig. 4.28 a Phase portrait of a van der Pol oscillator with large damping, i.e., ε � 1. When a
solution trajectories approaches the cubic nullcline (dashed curve), y = x3/3 − x , the motion is
very slow but it quickly jumps horizontally once it reaches either of the local minima or maxima
of the nullcline. These type of oscillations where we have a slow buildup followed by a quick
discharge are called “relaxation oscillations”. b Time series solution of the system versus time. The
characteristic “relaxation oscillations” are seen in this plot

ẋ = ε
(
y − 1

3 x3 + x
)
, (4.51)

ẏ = − x

ε
.

The curve y = x3

3 − x is the nullcline for ẋ and serves to separate fast motion from
slow motion in phase space. Since ε � 1, then the relation |ẋ | >> |ẏ| = O (1/ε)
holds for most x and y. This implies that for most x and y, solution trajectories
move fast in the horizontal direction and very slow in the vertical direction. However,
when a solution enters the region where |y − ( x3

3 − x)| = O (1/ε2), then ẋ and ẏ are
comparable because both of them areO (1/ε). This implies that solution trajectories
move slowly along the curve y = x3

3 − x , then rapidly after they eventually exit from
this region. See Fig. 4.28. This combination of slow and fast motion leads to what
is known as a relaxation oscillation. A time series of the solution trajectory around
the limit cycle is shown in Fig. 4.28, and the fast and slow motion is readily seen.

The stability of the trivial equilibrium is studied by computing the Jacobianmatrix
of Sys. (4.51), where

J (xe, ye) =
[

ε(1 − x2
e ) ε

− 1
ε

0

]
.

At (xe, ye) = (0, 0), the eigenvalues of the Jacobian matrix are

λ = 1
2

(
ε ±

√
ε2 − 4

)
,

which shows the trivial equilibrium is unstable for ε > 0. When ε = 0, the eigen-
values are purely imaginary, λ = ±i , which is indicative of a Hopf bifurcation and
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the creation of periodic solutions. Details of this type of bifurcation are discussed in
Chap. .

Weakly Forced van der Pol Oscillator
As with the Duffing oscillator (see Sect. 4.8.3), the van der Pol oscillator has been
widely studied with weak forcing [3, 31]. A weak forcing function is added to the
van der Pol Eq. (4.46) with weak damping, and the model satisfies:

ẍ + x = ε
[
(1 − x2)ẋ + γ cos (ωt)

]
. (4.52)

With x1 = x and x2 = ẋ1, Eq. (4.52) is written in system form:

ẋ1 = x2,

ẋ2 = −x1 + ε
[
(1 − x2

1 )x2 + γ cos (ωt)
]
.

Following the techniques of Sect. 4.8.3 and applying the van der Pol transforma-
tion, the invertible transformation satisfies:

(
x1
x2

)
= Φ(t)

(
y1
y2

)
, where Φ(t) =

(
sinωt cosωt

ω cosωt −ω sinωt

)
.

With the van der Pol transformation and the assumption that the natural frequency
is close to the forcing frequency, ω2 = 1 + εΩ , it follows that

(
ẏ1
ẏ2

)
= Φ−1(t)

[
−Φ̇(t)

(
y1
y2

)
+
(

x2
−x1 + ε

[
(1 − x2

1 )x2 + γ cos (ωt)
]
)]

,

(
ẏ1
ẏ2

)
= ε

ω

[
(Ωx1 + (1 − x2

1 )x2 + γ cos (ωt)) cosωt
(−Ωx1 − (1 − x2

1 )x2 − γ cos (ωt)) sinωt

]
, (4.53)

where x1 = y1 sinωt + y2 cosωt and x2 = ω(y1 cosωt − y2 sinωt). This ODE in
(y1, y2)T has the form of Eq. (4.27), so allows the Theorem of Averaging 4.4.

Expanding the right hand side of Sys. (4.53) with our expressions for x1 and x2,
we integrate over the period of the forcing function, 2π/ω, letting y1 and y2 be treated
as constant. The averaging process eliminates all of the trigonometric functions and
reduces the averaged system to:

ẏ1 = ε

2ω

[
Ωy2 + γ + ωy1

(
1 − y21 + y22

4

)]
+ O (ε2) , (4.54)

ẏ2 = ε

2ω

[
−Ωy1 + ωy2

(
1 − y21 + y22

4

)]
+ O (ε2) .
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Fig. 4.29 Comparison of
numerical integration of a
weakly forced van der Pol
oscillator with a solution
obtained through the method
of averaging
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Figure 4.29 shows a comparison of solutions of the weakly forced van der Pol
oscillator obtained by numerical integration of Sys. (4.53) with those obtained via
averaging, Sys. (4.54). The MATLAB code that was written to generate these simu-
lations can be found in the Appendix.

4.8.5 The FitzHugh-Nagumo Model

In the introduction of this book the Hodgkin-Huxley Eq. () gave a representative
PDE model, describing the dynamics of an action potential in space and time along
a giant squid axon. Their model [32–34], based on detailed experiments, continues
to generate novel research from the precision of their electrophysiological measure-
ments and careful description of the biophysics of neural excitation. However, their
model remains too complex for detailed analysis and implementation in problems,
such as collections of neurons.

Numerous researchers have developed simplified models that capture the qualita-
tive properties of neuronal excitation and action potential propagation with simpler
models. FitzHugh [35, 36] proposed an early model, inspired by the van der Pol
oscillator (see Sect. 4.8.4), which has some of the neural qualitative behaviors and
has the general form

dV

dt
= f (V ) − W + I

dW

dt
= 1

c
(V + a − bW ),

(4.55)

where V is the voltage across the membrane cell and W is a variable that models
the recovery process of the membrane. f (V ) is usually a third degree polynomial,
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Fig. 4.30 Equivalent circuit
of the FitzHugh-Nagumo
model

and a, b and c are constant parameters. I represents the external stimulus current.
Nagumo [37] proposed an equivalent circuit, see Fig. 4.30, which contains a tunnel
diode for modeling the nonlinear response of the membrane current, a capacitor
that models the membrane capacitance, a resistor that represents channel resistance,
and an inductor. This model (and circuit) became known as the FitzHugh-Nagumo
model.

This section analyzes a special form of the model:

dx

dt
= x − 1

3 x3 − y + I

dy

dt
= 1

c
(x + a − by).

(4.56)

As a model for neural excitation, the behavior of Sys. (4.56) needs to reproduce
different responses from changing the external stimulus, I . In particular, a neuron
responds to a weak stimulus by simply damping out. A larger stimulus results in an
action potential with a rapid voltage increase followed by becoming quiescent. A
sufficiently large stimulus results in repetitive spikes of action potentials.

The analysis of Eq. (4.56) begins with finding the equilibria, using a nullcline
analysis similar to Sect. 4.5. The x-nullcline satisfies:

x − 1
3 x3 − y + I = 0 or y = x − 1

3 x3 + I,

while the y-nullcline satisfies:
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1
c (x + a − by) = 0 or y = x + a

b
.

Equilibria occur where these nullclines intersect, so depend on the parameters a, b,
and I . The parameter I shifts the cubic x-nullcline vertically, and it is easily seen
that this nullcline has a maximum slope of one at x = 0. Geometrically, it follows
that if the linear y-nullcline has a slope greater than one, so 0 < b < 1, then there is
a unique equilibrium. This satisfies the equation:

x3 + 3(1 − b)

b
x + 3(a − bI )

b
= 0, 0 < b < 1, (4.57)

which is most easily solved numerically.
As the FitzHugh-Nagumo model represents a neuron, when the neuron is at rest

(I = 0), there should be a unique stable equilibrium. The stability of Eq. (4.56)
depends on its linearization, and this system has the Jacobian matrix:

J (xe) =
(
1 − x2

e −1
1
c − b

c

)
.

At the unique equilibrium point, xe, the characteristic equation for its eigenvalues, λ
satisfies:

λ2 − Tr(J )λ + Det(J ) = 0, (4.58)

where

Tr(J ) = 1 − x2
e − b

c
, Det(J ) = b

c
x2

e + 1 − b

c
.

The trace-determinant stability plane of Fig. 4.8 shows that when Tr(J ) < 0 and
Tr2(J ) − 4Det(J ) < 0, the equilibrium is a stable spiral sink, and when Tr(J ) > 0,
it becomes an unstable spiral source.

Consider the FitzHugh-Nagumo model (4.56) with the parameters a = 0.7, b =
0.8, and c = 12.5. We illustrate the response of this model from the resting state
as various external stimuli, I are applied. The resting state from (4.57) gives the
equilibrium:

xe = −1.199 and ye = −0.6243.

From the characteristic equation (4.58) with this equilibrium, the eigenvalues are:

λ = −0.2513 ± 0.2119i,

giving a stable spiral.
We assume a small external stimulus with the neuron beginning at rest, I = 0.15,

which shifts the equilibrium to:

xe = −1.104 and ye = −0.505.
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Fig. 4.31 FitzHugh-Nagumo model (4.56) is simulated with parameters a = 0.7, b = 0.8, and
c = 12.5 and external stimulus I = 0.15. a gives the phase portrait of the simulation, including the
x and y nullclines notably intersecting to the left of the minimum of the cubic. b gives the times
series response to (4.56) and demonstrates simply decay of the stimulus by the neuron

The eigenvalues continue to have negative real parts at this equilibrium:

λ = −0.142 ± 0.272i.

giving a stable spiral. Figure 4.31 shows the phase portrait and time series response
to this small external stimulus. Starting at the resting phase, this neuronal response
shows a basic damped oscillator settling at the equilibrium nearby.

Next a larger external stimulus to the neuron beginning at rest is employed with
I = 0.3. This shifts the equilibrium to:

xe = −0.993 and ye = −0.367.

The eigenvalues continue to have negative real parts at this equilibrium:

λ = −0.0253 ± 0.2802i,

implying a local stable spiral. Figure 4.32 shows the phase portrait and time series
response to this larger external stimulus. Starting at the resting phase, this neuronal
response has a very different trajectory as the action potential fires with a rapid
increase in the voltage, which is followed by a recovery period with a voltage below
the equilibrium. The solution trajectory follows close to the outer branches of the
cubic or x-nullcline and eventually spiraling into the shifted equilibrium at the inter-
section of the nullclines. This is the behavior expected of a neuron firing once and
returning to a resting state.

With still a larger external stimulus, I = 0.35, to the neuron beginning at rest, the
equilibrium shifts to:
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Fig. 4.32 FitzHugh-Nagumo model (4.56) is simulated with parameters a = 0.7, b = 0.8, and
c = 12.5 and external stimulus I = 0.3. a gives the phase portrait of the simulation, including the
x and y nullclines intersecting near the minimum of the cubic. b gives the times series response
to (4.56) and shows a single action potential, where the solution trajectory jumps quickly to the
positive descending branch of the cubic, decaying slowly before quickly following the negative
descending branch of the cubic, and finally spiraling into the stable equilibrium

xe = −0.951 and ye = −0.314.

Now the eigenvalues have positive real parts at this equilibrium:

λ = 0.0153 ± 0.2715i.

locally giving an unstable spiral. Figure 4.33 shows the phase portrait and time series
response to this external stimulus. This response is very similar to the van der Pol
relaxation oscillator (see Sect. 4.8.4). From the resting state, the voltage of the neu-
ron rapidly increases to the positive descending branch of the cubic or x-nullcline
with the speed depending on c. The solution trajectory more slowly decays in the
x-direction until after the relative maximum of the cubic. Subsequently, the volt-
age rapidly decays below the equilibrium, then slowly increases along the negative
descending branch of the cubic (refractory period). After passing theminimum of the
cubic, the trajectory roughly repeats this process, leading to an infinite sequence of
action potentials as seen in Fig. 4.33b.Many neurons have been shown to exhibit reg-
ular periodic spiking, qualitatively making this model behavior appropriate though
somewhat different from the actual waveform of neuronal voltage.

This section shows that the FitzHugh-Nagumo model (4.56) provides some of
the qualitative behavior of the Hodgkin-Huxley experiments on the giant squid axon
when stimulated by an external stimulus, so provides a relatively simple model for
studying neural behavior. However, the voltage response of thismodel fails to capture
many of the details of the voltage waveform observed in experiments, which often
require modeling the actual molecular channels in the neuronal membrane. However,
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Fig. 4.33 FitzHugh-Nagumo model (4.56) is simulated with parameters a = 0.7, b = 0.8, and
c = 12.5 and external stimulus I = 0.3. a gives the phase portrait of the simulation, including the x
and y nullclines again intersecting to the left of the minimum of the cubic. b gives the times series
response to (4.56)

Eq. (4.56) does illustrate the significant change of behavior, which occurs as the
external stimulus increases from a quiescent state to a stable single action potential
to a series of action potential spikes. These are observed by the linear analysis and the
roots of the characteristic equation shifting from negative to positive real part, which
is also known as a Hopf bifurcation and will be studied in more detail in Chap. . For
our example above, this critical change in stability occurs at Ic = 0.3313.

4.9 Crystal Oscillators

A crystal is a solid in which the constituent atoms, molecules, or ions are packed in
a regularly ordered, repeating pattern extending in all three spatial dimensions [38,
39]. Almost any object made of an elastic material could be used like a crystal,
with appropriate transducers, since all objects have natural resonant frequencies of
vibration. For example, steel is very elastic and has a high speed of sound. It was
often used in mechanical filters before quartz. The resonant frequency depends on
size, shape, elasticity, and the speed of sound in thematerial. High-frequency crystals
are typically cut in the shape of a simple, rectangular plate. Low-frequency crystals,
such as those used in digital watches, are typically cut in the shape of a tuning fork.
For applications not needing very precise timing, a low-cost ceramic resonator is
often used in place of a quartz crystal.

When a crystal of quartz is properly cut andmounted, it can bemade to distort in an
electric field by applying a voltage to an electrode near or on the crystal. This property
is known as electrostriction or inverse piezoelectricity. When the field is removed,
the quartz will generate an electric field as it returns to its previous shape, and this can



4.9 Crystal Oscillators 141

Fig. 4.34 (Left) Schematic
of a quartz crystal. (Right) A
quartz crystal behaves like
circuit composed of an
inductor, capacitor and
resistor, so it oscillates with a
precise resonant frequency
when it is subjected to an
electric field

generate a voltage. The result is that a quartz crystal behaves like a circuit composed
of an inductor, capacitor and resistor, with a precise resonant frequency [40], see
Fig. 4.34.

Quartz has the further advantage that its elastic constants and its size change
in such a way that the frequency dependence on temperature can be very low. The
specific characteristicswill dependon themodeof vibration and the angle atwhich the
quartz is cut (relative to its crystallographic axes). Therefore, the resonant frequency
of the plate, which depends on its size, will not change much, either. This means that
a quartz clock, filter or oscillator will remain accurate. For critical applications the
quartz oscillator is mounted in a temperature-controlled container, called a crystal
oven, and can also be mounted on shock absorbers to prevent external mechanical
vibrations.

4.9.1 Two-Mode Oscillator Model

The crystal oscillator circuit sustains oscillation by taking a voltage signal from the
quartz resonator, amplifying it, and feeding it back to the resonator. The rate of
expansion and contraction of the quartz is the resonant frequency, and is determined
by the cut and size of the crystal.When the energy of the generated output frequencies
matches the losses in the circuit, an oscillation can be sustained. The frequency of
the crystal is slightly adjustable by modifying the attached capacitances. A varactor,
a diode with capacitance depending on applied voltage, is often used in voltage-
controlled crystal oscillators, VCO.

The analog port of the VCO chip is modeled by a nonlinear resistor R−, see
Fig. 4.35, that obeys the voltage-current relationship

v(i) = −ai + bi3,
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Fig. 4.35 Two-mode crystal
oscillator circuit. A second
set of spurious RLC
components (R2, L2, C2) are
introduced by parasitic
elements

R2
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where a and b are constant parameters. A major reason for the wide use of crystal
oscillators is their high Q factor. This is a dimensionless parameter that indicates
how underdamped an oscillator is. For a crystal oscillator, it can be defined as the
ratio of the resonant frequency with respect to the half-power bandwidth, i.e., the
bandwidth over which the power of vibration is greater than half the power at the
resonant frequency. Higher Q indicates that the oscillations die out more slowly. A
typical Q value for a quartz oscillator ranges from 104 to 106, compared to perhaps
102 for an LC oscillator. The maximum Q for a high stability quartz oscillator can be
estimated as Q = 1.6 × 107/ f , where f is the resonance frequency in megahertz.

The inductance of the leads connecting the crystal to the VCO port is represented
by Lc. In addition, parasitic elements can be represented by a series resonator (L2,C2,
R2) connected in parallel with the nonlinear resistor. The resulting circuit, depicted
in Fig. 4.35, forms a two-mode resonator model. To derive a mathematical model for
the time-evolution of the circuit we employ Kirchoff’s Law of Circuits [9].

4.9.2 Kirchoff’s Law of Circuits

The German physicists Gustav Kirchhoff introduced in 1845 two laws that serve to
model the current and voltage evolution of electrical circuits, although they can also
be used in the frequency domain to model networks.

Kirchhoff’sFirstLawofCurrent.The algebraic sumof currents, Ik , in a network
of conductors meeting at a point is zero. Mathematically speaking, this law implies
that

n∑

k=1

Ik = 0.
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Fig. 4.36 Kirchoff’s current
law: The algebraic sum of
currents in a network of
conductors meeting at a
point is zero
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Figure 4.36 below illustrates the first law. The sum of the currents flowing through
the resistor, R1, the voltage sourceV0,must be equal to the current, i2, flowing through
the mixer plus the current, i3, entering the common node. That is:

i2 + i3 = i1 + i4.

Kirchhoff’s Second Law of Voltage. The directed sum of voltages, Vk , around
any closed loop is zero. That is,

n∑

k=1

Vk = 0.

Using the RLC circuit diagram of Fig. 4.37 as a reference, this law implies that
the sum of the voltage across each of the circuit elements, resistor, R, capacitor, C ,
and inductance, L , plus the voltage provided by the source V0 must add up to zero.
That is

V0 + VR + VL + VC = 0,

where VR , VL and VC , are, respectively, the individual voltages across the resistor,
inductor, and capacitor.

Now, the individual voltages across the components of the circuit are computed as
follows. The voltage across the resistor is calculated using Ohm’s law: VR = RI (t),
where R is the resistor and I (t) is the current flowing across it. The voltage, VL ,
across the inductor, L , is determined by Faraday’s law of induction: VL = L d I (t)

dt .

Finally, the voltage, VC , across the capacitor, C , is given by VC = q(t)
C , where q(t)

is the charge store across the capacitor. Kirchhoff’s second law of voltage leads to
the following relation among the voltages:

− V0 = RI + q

C
+ L

d I

dt
. (4.59)
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Fig. 4.37 Kirchoff’s voltage
law: The directed sum of the
voltages around any closed
loop is zero
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Letting V (t) = −V0, and since I (t) = dq(t)
dt , we can differentiate every term of

Eq. (4.59) to derive a mathematical model for the RLC circuit in terms of I (t), as
follows

L
d2 I

dt2
+ R

d I

dt
+ 1

C
I = dV

dt
. (4.60)

This model Eq. (4.60) is valid for both types of voltages, a DC voltage and an AC
voltage. In the DC case, V0 is constant so the right-hand side of Eq. (4.60) becomes
zero, leading to a homogenous, linear, second order ODE model. In the AC case,
we can consider a periodic voltage source, with amplitude, A, and frequency, ω, i.e.,
of the form, V (t) = A sinωt , which yields a non-homgeneous, linear, second order
ODE model. A critical observation is that in both cases, DC and AC voltage, the
model Eq. (4.60) is of the same form as the universal model of a linear oscillator
system, which was introduced earlier through Eq. (4.30). All the different cases,
and solutions, that were obtained earlier also apply to Eq. (4.60), with a0, a1 and a2

replaced by 1/C , R, and L , respectively, and F(t) = A sinωt .

Crystal Oscillator. Let’s consider now the circuit that serves as a model for the
crystal oscillator, see Fig. 4.35. Following on the previous example, we can apply
Kirchhoff’s voltage law to each RLC loop in the crystal oscillator circuit to get

(L1 + Lc)
d2i1
dt2

+ R1
di1
dt

+ 1

C1
i1 = −dv(t)

dt

L2
d2i2
dt2

+ R2
di2
dt

+ 1

C2
i2 = −dv(t)

dt
,

(4.61)

wherev(i(t)) = −ai + bi3, inwhich i is the current circulating through the nonlinear
resistor R−. From Kirchhoff’s first law of current, we have
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i = i1 + i2.

Thus, v(i(t)) becomes: v(i(t)) = −a(i1 + i2) + b(i1 + i2)3. Differentiating
v(i(t)), with respect to t , we get

dv

dt
= (−a + 3b(i1 + i2)

2)
(

di1
dt

+ di2
dt

)
.

Substituting dv
dt into Eq. (4.61) yields the following governing equations for the

crystal oscillator circuit:

L j
d2i j

dt2
+ R j

di j

dt
+ 1

C j
i j = [

a − 3b(i1 + i2)
2
] [di1

dt
+ di2

dt

]
, (4.62)

where j = 1, 2 and Lc has been included in L1.

4.9.3 Averaging

Next we apply the technique to convert the two-mode crystal oscillator model (4.62)
to a systemof differential equations. Since themodel equations (4.62) are actually two
2nd-order differential equations, we would need to introduce two sets of variables,
one for current i1 and one for current i2, as follows. Letting

x1 = i1, x2 = di1
dt

, x3 = i2, x4 = di2
dt

,

and ω2
0 j = 1/L j C j and X = [x1, x2, x3, x4]T , the model equations (4.62) can be

rewritten as
d X

dt
= F(X) ≡ AX + N (X), (4.63)

where

A =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 0

−ω2
01

a − R1

L1
0

a

L1
0 0 0 1

0
a

L2
−ω2

02

a − R2

L2

⎤

⎥⎥⎥⎥⎥⎦
, N (X) =

⎡

⎢⎢⎢⎢⎢⎣

0
−3b

L1
(x1 + x3)

2(x2 + x4)

0
−3b

L2
(x1 + x3)

2(x2 + x4)

⎤

⎥⎥⎥⎥⎥⎦
.

The terms AX and N (X) represent the linear and nonlinear terms, respectively,
which, together, govern the behavior of the two-mode crystal oscillator.
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In what follows we assume nonresonance conditions among ω01 and ω02, so that

there are no nonzero integers p and q for which
ω01

ω02
= p

q
. Using the invertible van

der Pol transformation ⎛

⎜⎜⎝

x1
x2
x3
x4

⎞

⎟⎟⎠ = Φ(t)

⎛

⎜⎜⎝

y1
y2
y3
y4

⎞

⎟⎟⎠ ,

where

Φ(t) =

⎛

⎜⎜⎝

cosω1t − sinω1t 0 0
−ω1 sinω1t −ω1 cosω1t 0 0

0 0 cosω2t − sinω2t
0 0 −ω2 sinω2t −ω2 cosω2t

⎞

⎟⎟⎠ .

Equation (4.63) can be rewritten as

dY

dt
= εF(Y, t), (4.64)

where Y = [y1, . . . , y4]T and the derivatives are explicitly given by

ẏ1 = 1

ω1

{
Ω1
[
y1 cos(ω1t) − y2 sin(ω1t)

]− N1

}
sin(ω1t)

ẏ2 = 1

ω1

{
Ω1
[
y1 cos(ω1t) − y2 sin(ω1t)

]− N1

}
cos(ω1t)

ẏ3 = 1

ω2

{
Ω2
[
y3 cos(ω2t) − y4 sin(ω2t)

]− N2

}
sin(ω2t)

ẏ4 = 1

ω2

{
Ω2
[
y3 cos(ω2t) − y4 sin(ω2t)

]− N2

}
cos(ω2t),

with ω2
01 − ω2

1 = εΩ1 and ω2
02 − ω2

2 = εΩ2. Averaging over the periods T1 = 2π/ω1

and T2 = 2π/ω2 we arrive at the simplified equation

dY

dt
= εF̄(Y ) ≡ ε ĀY + εN̄ (Y ), (4.65)

where F̄(Y ) = lim
T →∞

1

T

∫ T

0
F(Y, t)dt and
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Fig. 4.38 Time series solutions of a two-mode crystal oscillator model (4.62). (Left) Stable
Mode 1 (i1(t), 0), and (right) Stable Mode 2 (0, i2(t)). Parameter values are: R1 = 30.9Ω ,
R2 = 181.1Ω , L1 = 5.2E − 04H , L2 = 2.6E − 04H , C1 = 1.0E − 13F , C2 = 2.5E − 14F ,
a = 939, b = 3E08

Ā =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a − R1

2L1
− Ω1

2ω1
0 0

Ω1

2ω1

a − R1

2L1
0 0

0 0
a − R2

2L2
− Ω2

2ω2

0 0
Ω2

2ω2

a − R2

2L2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, N̄ (X) = −3b

8

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

y1
L1

[y21 + y22 + 2(y23 + y24 )]
y2
L1

[y21 + y22 + 2(y23 + y24 )]
y3
L2

[y23 + y24 + 2(y21 + y22 )]
y4
L2

[y23 + y24 + 2(y21 + y22 )]

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Equation (4.65) can be interpreted as a representation of the original model
Eq. (4.63) with respect to two rotating frames of reference, one rotatingwith speedω1

and one with speed ω2. Observe that in this rotating coordinate system, y1 = y2 = 0
and y3 = y4 = 0 are two invariant subspaces so that the two modes of oscillation of
the crystal decouple from one another. Figure 4.38 shows the two modes of oscilla-
tions, in the variables x1 and x3, decoupled via the method of averaging. Later on in
Chap. we will employ crystal oscillators as building blocks to design a model for a
precision timing device through networks of interconnected crystals.

4.10 Fluxgate Magnetometer

We have already seen examples of various systems, natural and artificial ones, that
exhibit oscillatory behavior, i.e., cyclic behavior that repeats at regular intervals.
Additional examples include: the rhythmic light pulses of fireflies [41, 42], see
Fig. 4.39, the electrical activity of neuron cells that make up central pattern gen-
erators in biological systems [43–49], see Fig. in the introduction, the patterns of
lights produced by arrays of coupled lasers [50, 51], voltage variations in modern
communication systems [52, 53], the growth and decay of population sizes between
competing species [54–56], bubble formation and evolution in fluidization and mix-
ing processes [57], and variations in phase and current in arrays of Josephson junc-
tions [58–61] in quantum physics.
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Fig. 4.39 Complex interactions among fireflies can lead them to coordinate the rhythmic flashing
lights produced by each individual firefly. Collectively, the swarm can then achieve synchronization
and oscillate in unison. Source National Geographic

In the absence of noise, the underlying cyclic fluctuations in a given nonlinear
system can arise from individual units that oscillate on their own, also known as
endogenous or self-excited oscillators, or from exogenous units that oscillate only
when they are externally driven or coupled together. Circadian rhythms , which
regulate the daily cycle of many living organisms, plants, and animals, for instance,
are endogenously generated. In fact, the first endogenous circadian oscillation to be
observed was the movement of the leaves of Mimosa pudica, a plant studied by the
French scientist Jean-Jacques dÒetous de Mairan.1

In addition, bistability—the property that allows a system to rest in either of two
states—underlies the basic oscillatory behavior of many other natural and artificial
systems. Statesmay include typical invariant sets, such as equilibriumpoints, periodic
and quasi-periodic solutions, and chaotic attractors. In the absence of an external
stimulus, the state variable x(t) of a bistable system will relax to one of the invariant
sets, and it will remain in that state unless it is switched or forced to another state.
It is in this sense that the system exhibits “memory.” Which invariant set the system
will relax to depends typically on the set of initial conditions.

Next we introduce the concept of bistability in more detail and, later on, we will
use it to derive a mathematical model for a fluxgate magnetometer.

1 Source: Wikepedia https://en.wikepedia.org.

https://en.wikepedia.org
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4.10.1 Bistability

All bistable systems employ some form of energy source as the underlying principle
that allows them to switch between states. The source of energy is due typically
through external forcing or through the coupling mechanism. For instance, dynamic
sensors [62–66], operate as exogeneous oscillators with nonlinear input-output char-
acteristics, often corresponding to a bistable potential energy function of the form

dx

dt
= −∇U (x), (4.66)

where x(t) is the state variable of the natural system or artificial device, e.g., mag-
netization state, and U is the bistable potential function. Examples include: flux-
gatemagnetometers [67, 68], ferroelectric sensors [69], and mechanical sensors,
e.g., acoustic transducers made with piezoelectric materials. Later on in this chapter
we will derive a mathematical model for a fluxgate magnetometer and show how
bistability plays a critical role.

To get insight, consider Fig. 4.40(top), which illustrates the case of a double-well
potential function

U (x) = −ax2 + bx4,

whose minima are located at ±xm and the height of the potential barrier between the
two minima is labeled by U0.

Without an external excitation (periodic forcing or noise), the state point x(t)
of the exogenous oscillator described by Eq. (4.66) will rapidly relax to one of two
stable attractors, which correspond to the minima of the potential energy function
U (x). In the presence of an external periodic forcing term f (t), with frequency
ω, the state variable in U (x + f (t)) can be induced to oscillate periodically (with
a well-defined waveform) between its two stable attractors −xm and +xm , as is
illustrated in Fig. 4.40(bottom). The forcing term is also known as biasing signal in
the engineering literature.

In biological systems, bistability is a key feature for understanding and engineer-
ing cellular functions such as: storing and processing information by the human brain
during the decision-making process [70]; regulation of the cell cycle [71, 72]; sporu-
lation, which controls the timing and dynamics of dramatic responses to stress [73];
design and construction of synthetic toggle switches [74]; and in gene regulatory net-
works responsible for embryonic stem cell fate decisions [75]. In chemical systems
bistability is central to the analysis of relaxation kinetics [76]. In mechanical sys-
tems, bistable mechanisms are commonly employed in the design and fabrications of
Micro-Electro-Mechanical-Systems (MEMS) versions of relays, valves, clips, and
threshold switches [77, 78]. In electronics, hysteresis and bistability are combined
to design and fabricate Schmitt trigger circuits, which convert analog input signals
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Fig. 4.40 (Top) Bistable
Potential
U (x) = −ax2 + bx4.
(Bottom) Switching
between wells of a potential
function can be achieved by
a sufficiently large biasing
signals (or noise) greater
than the potential barrier
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to digital output signals [79]. In neuroscience, bistability is at the core of Hopf mod-
els [80–82], which describe the input/output response of neurons through differential
equations of the form

τi
dVi

dt
= −Vi + g(Vi ), (4.67)

where τi is a suitable time constant that controls how quickly unit(neuron) i responds
to a stimulus, Vi is the output (typically voltage) of unit i , and g is the activation
function, which normally represents a saturation nonlinearity property of neurons.

Let’s now discuss a specific example of a nonlinear device that is governed by
stability–a fluxgate magnetometer.
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Table 4.4 Magnetic fields measurements for different objects vary according to distance and size
of each individual object. Units appear in nano-Tesla nT

Ferrous Components “Near” “Far”

Ship (100 tons) 100 ft (300 − 700 nT ) 1000 ft (0.3 − 0.7 nT )

Train Engine 500 ft (5 − 200 nT ) 1000 ft (1 − 50 nT )

Automobile (1 ton) 30 Feet (40 nT ) 100 ft (1 nT )

Rifle 5 ft (10 − 50 nT ) 10 ft (2 − 10 nT )

Screwdriver (5") 5 ft (5 − 10 nT ) 10 ft (0.5 − 1 nT )

4.10.2 What is a Fluxgate Magnetometer

A fluxgate magnetometer is a relatively simple device that is built to measure mag-
netic fields produced by certain materials [83–86]. In the biomedical field, for
instance, research with magnetic tracers has lead scientists to consider using flux-
gate sensors to study the mechanical activity of the large intestine [87]. Other poten-
tial applications include remote sensing [88], geological explorations of the deep
ocean [89], vehicle guidance in agriculture [90], and traffic control [91]. Magnetic
materials such as iron, cobalt, and steel, contain tiny subatomic regions of magnetism
called domains. When these domains align the result is a magnetic field. Now in any
ferrous object the magnetic lines of force or flux are greatest at the ends of a magnet
or dipole. Of course, magnetic forces vary according to size, shape, and orientation
of the object. Consider a simple rifle. This rifle can be approximated by a magnetic
dipole and has its own variations of magnetic lines of force. These lines of force
influence the Earth’s magnet forces which cause a change in the Earth’s ambient
local magnetic field near the rifle. This change is commonly know as an anomaly.
Fluxgate magnetometers can measure this magnetic field anomalies. The amount of
measurable change in an anomaly force depends on the size and distance from the
device. A basic idea of some of the typical measurements can be seen in Table 4.4,
which was originally produced by Breiner [92]. Today’s highly specialized fluxgate
devices boast laboratory sensitivity levels as low as 10pT/

√
H z.

4.10.3 How Does a Fluxgate Magnetometer Work?

In itsmost basic form, a classical fluxgate sensor consist of two detection coils wound
around a ferromagnetic core in opposite directions to one another, as is illustrated in
Fig. 4.41. The excitation coil serves to drive the core into saturation [93], so it can
oscillate, between two stable magnetization states. The pick-up coil serves to record
the oscillations. Then an external field or signal can be detected by processing its
effects on the input-put response of the oscillating signal. We explain this in more
detail.
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Fig. 4.41 Schematic configuration of a traditional fluxgate magnetometer as proposed by
Forster [94]. SourceUniversity of Catania http://www.measurement.dees.unict.it/rtd_fluxgate.html

The underlying principle of operation of the fluxgate magnetometer is based on
the concept of bistability discussed earlier on. The core exhibits hysteresis in its
input-output response to an external magnetic field. That is, it can switch between its
two (assumed to be stable) magnetization states when an external field Hx is applied.
In practice, the coercive field ΔU (roughly the deterministic switching threshold
between the stable states of an energy function U (x)) can be quite high, so that
the device might show little response to a target signal Hx of amplitude far smaller
than the energy barrier height. Hence, the standard detection method consists of
applying a known time-periodic (usually taken to be triangular or sinusoidal) bias
signal, He(t), of very large amplitude, to periodically drive the core between its two
stable magnetization states, see Fig. 4.41.

To detect a small target signal (dc or low-frequency), the spectral-based [85, 86,
95, 96], readout mechanism is employed. In the absence of a target signal, i.e.,
Hx = 0, the power spectral density contains only the odd harmonics of the bias
frequency ω. But when Hx > 0, the potential energy function U (x + He(t) + Hx )

is skewed, resulting in the appearance of even harmonics; the response at the second
harmonic 2ω is then used to detect and quantify the target signal, as is shown in
Fig. 4.42.

http://www.measurement.dees.unict.it/rtd_fluxgate.html
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Fig. 4.42 Power Spectrum Decomposition of the oscillations in a bistable overdamped system
subject to a periodic forcing. (Left) In the absence of an external signal the PSD shows only even
harmonics. (Right) In the presence of an external signal, however, the PSD exhibits odd as well as
even harmonics. Typically, the first even harmonic is used as a detection mechanism

4.10.4 Modeling Single-Core Dynamics

To derive the governing equations for a fluxgate magnetometer, we start with Lan-
dau’s theory [97] on the physics of phase transitions, which allows to formulate a
mathematical model in the form of a continuous differential equation for the average
magnetization state of a fluxgate device.

We consider a single-core fluxgate with a two-coil structure (a primary coil and a
secondary coil) wound around a suitable magnetic core, as is depicted in Fig. 4.41.
The magnetization of the core is governed by the excitation field He produced in the
primary coil and the core is composed of a ferromagnetic material with the char-
acteristic “sharp” input-output hysteresis loop, corresponding to a bistable potential
energy function, which underpins the system dynamics; the minima of this poten-
tial energy function correspond to the two (stable) steady magnetization states, see
Fig. 4.40. In order to reverse the core magnetization, a suprathreshold excitation field
is required. Here, the “threshold” represents theminimumfield required to switch the
saturation of the material. Mathematically, it corresponds to the inflection point(s)
in the potential function. With an alternating excitation (or bias) magnetic field He,
the output voltage Vo at the secondary coil will be alternating and symmetric in time.
The presence of an external “target” magnetic field Hx will break this symmetry and
the resulting temporal asymmetry can be used to monitor the target field amplitude.

A simple way to model the ferromagnetic dynamics is through an Ising-type
model. We assume the core to be composed of a set of atomic magnets, called
“spins”, arranged on a regular lattice that represents the crystal structure of the
core [98]. Thermal fluctuations tend to disrupt the orientation of the spins while spin
interactions tend to align the spins with each other. When the temperature T exceeds
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Fig. 4.43 (Left) A ferromagnet in a paramagnet state, well above the critical temperature Tc the
magnetic spins are randomly organized. (Right) Below the critical temperature, a majority of the
spins are uniformly organized in one of two states, “up” or “down”. Source Introduction to the
Theory of Neural Computation [101]

a critical temperature Tc, called the Curie temperature, the system exhibits a phase
transition [99, 100] from a paramagnet state with little magnetization properties to
a ferromagnetic state, where magnetization is uniform, see Fig. 4.43.

A particularly useful simplification is to consider spin 1/2 magnetic materials, so
that only two distinct directions are possible: “spin up” (Si = +1) and “spin down”
(Si = −1), where Si is the state variable that describes the orientation of the spin
found at lattice i . Then the average magnetic field 〈hi 〉 at spin Si is determined by
adding the average contributions from all neighboring spins Sj and from any external
hext applied field through:

〈hi 〉 =
∑

j→i

wi j 〈Sj 〉 + hext , (4.68)

where wi j is the coupling strength of the influence of spin Sj on Si . The applied field
hi can induce the magnetic spin to switch back and forth between its two states +1
and −1. The actual switching mechanism can be modeled by an activation function:

〈Si 〉 = tanh(β〈hi 〉), (4.69)

where the parameter β is related to the temperature T through β = 1/(kB T ), with
kB being Boltzmann’s constant. Substituting Eq. (4.68) into Eq. (4.69), shows that
the average magnetization is given by

〈Si 〉 = tanh(β
∑

j→i

wi j 〈Sj 〉 + βhext ). (4.70)
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Our interest is in the ferromagnetic state, in which 〈Si 〉 = 〈S〉. Assuming identical
coupling strengths wi j = 1/N , where N is the number of spins, we find a single
equation for the average magnetization:

〈S〉 = tanh(β〈S〉 + βhext ). (4.71)

An extension of this last equation with continuous updating of the average mag-
netization state leads to the following simple model of the fluxgate core dynamics

τ
dx

dt
= −x + tanh

(
x + hext

T

)
, (4.72)

where τ is a relaxation parameter, x = 〈S〉, kB = 1 so that β = 1/T is a pseudo-
temperature parameter, and h = hext . There is a close analogy of this model with
those of artificial Hopfield neural networks [102]. The saturation nonlinearity of the
tanh function, for instance, is equivalent to the activation function that controls the
response of individual neurons. There is also an analogy with the energy function
introduced by Hopfield [102] in neural network theory. In our case,

τ
dx

dt
= −∂U

∂x
(x, t),

where

U (x, t) = x2

2
− 1

c
ln cosh (c (x + He(t) + Hx )) ,

where c = 1/T , He(t) = hext . Observe that this is the same potential function that
appears in Fig. 4.41.Using this notation, themodel equation for a single-core fluxgate
magnetometer becomes

τ
dx

dt
= −x + tanh(c(x + He(t) + Hx )). (4.73)

Figure 4.44 shows a visualization of the vector field for the model equation (4.73),
generated with the aid of the MATLAB software package dfield [16]. Solid lines
are representative solution curves obtained by numerically integrating the model
equations with a variety of initial conditions. The external field has been set to
Hx = 0 and the biasing signal has also been set to He = 0, while the temperature
related parameter c = 3 corresponds to the case of a ferromagnetic material. Observe
that for this choice of parameters the model exhibits two stable equilibrium points
xe = ±1 and one unstable xe = 0.
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Fig. 4.44 Visualization of the vector field generated by the mathematical model that governs the
magnetization state of a fluxgate magnetometer. Parameters are: c > 1 determines a ferromagnetic
material while 0 < c < 1 defines a paramagnetic material; He(t) is the external biasing signal that
drives the system to oscillate; Hx is the target or external field to be detected

In fact, solving
−x + tanh(c(x + Hx )) = 0,

confirms that xe = {−1, 0, 1} are all indeed equilibrium points. To determine their
stability properties we set f (x) = −x + tanh(c(x + Hx )) and compute the deriva-
tive:

f ′(x) = −1 + c sech2(c(x + Hx )).

Direct substitution yields f ′(x = 0) = c − 1, so that xe = 0 is unstable when-
ever c > 1. This is always the case in the ferromagnetic regime since it requires
c > 1. Similarly, for the nonzero equilibrium points, we make use of the fact that
0 < sech c < 1, so that f ′(xe = ±1) < 0. It follows that the other two equilibrium
points xe = ±1 are stable. These calculations confirm the stability properties that
are inferred from direct observation of Fig. 4.44.

We now set Hx = 0.5 and generate once again the vector field visualization shown
in Fig. 4.45. This time only one equilibrium xe = +1 appears to be stable.

A more convenient method to visualize what is happening with the equilibrium
points when Hx varies is to plot simultaneously the functions tanh(c (x + Hx )) and
x . The intersection of the graphs of these two functions correspond to the location of
the equilibrium points. Thus, when Hx = 0, Fig. 4.46(left) shows three intersection
points which correspond to the tree equilibria xe = {−1, 0, 1}. But when Hx = 0.5
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Fig. 4.45 Same as Fig. 4.44 with a nonzero target field Hx
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Fig. 4.46 Equilibrium points of the model of a fluxgate magnetometer are the intersection points of
the graphs of tanh(c (x + Hx )) and x . (Left) For Hx = 0 there are two nonzero stable equilibrium
points xe = ±1 and one unstable at xe = 0. For Hx �= 0, there is a threshold value at which the
negative equilibrium and the zero one annihilate each other via a saddle-node bifurcation

there is only one xe = 1.0. In fact, something similar happens when Hx = −0.5, but
now the negative equilibrium xe = −1.0 appears. This last case is not plotted for
brevity.

Thus, as Hx increases continuously from zero the equilibria at −1 and at 0 move
towards each other until they collide with one another at a critical threshold value
of Hx . Past this critical value these two equilibrium points disappear. In reverse
order, i.e., decreasing now Hx towards zero, a Taylor series expansion shows that
the scenario under which the two equilibrium points re-appear is via a saddle-node
bifurcation. This task is left as an exercise for the reader. Geometrically, the effect of
continuously varying the external field Hx between positive and negative values is
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Fig. 4.47 (Left) Effect of continuously varying Hx between positive and negative values in the
fluxgate magnetometer model is equivalent to periodically rocking the potential function U (x) that
governs its behavior. (Right) In practice, the rocking effect is achieved by applying a periodically
varying external field of the form He(t) = A sin(w t), which leads to sustained oscillations. In this
example, Hx = 0, A = 1.0 and w = 1.0

equivalent to periodically “rocking” the potential function that governs the behavior
of the magnetometer. This rocking effect, in turn, induces the system to oscillate. In
practice, the coercive field can be quite high, thus the system has to be periodically
perturbed by a biasing signal of the form He(t) = A sin(w t) in order for the system
to sustain its oscillations. Figure 4.47 illustrates the sustained oscillations that can
be achieved through a sinusoidal biasing signal. In this example the external field is
set to Hx = 0 but the same effect is achieved for positive target fields.

4.11 Compartmental Models

Many natural and artificial systems are often modeled by decomposing them into a
number of interacting subsystems, or compartments. Each compartment contains a
series of states, which are typically interconnected (or coupled) to other states from
other compartments. This subdivision into a discrete number of states make com-
partmental models highly popular, and useful to model systems with large number
of components. Examples include: large population dynamics, such as epidemiology
and sociology, ecology, chemical kinetics, i.e., pharmokinetics. In this section, we
illustrate the use of compartmental models for the ongoing COVID pandemic. First,
we introduce some general concepts.
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Fig. 4.48 Representative example of a three-compartmental model

4.11.1 General Setting

Let N denote the total size of the system, e.g., number of species or population size.
Assume the population is then divided into k ≥ 2 qualitatively distinct classes or
compartments. Also, let xi represent the number of individuals, ni , in compartment
i at time t , so that xi ∈ R

ni , represents the state variable in compartment i , where
i = 1, . . . k. Then,

X (t) = [x1(t), x2(t), . . . , xn(t)]T ,

represents the state of the entire population. The phase space is X ∈ R
N , where

N = n1 + n2 + . . . + nk .
We also consider the following modeling assumptions.

1. Let pi j be the transition rate that defines the probability that an individual in
compartment i will move to compartment j .

2. Transitions among individuals are made independently throughout all compart-
ments. This means that each individual in each compartment has the same likeli-
hood of transitioning.

Compartmental models, and their modeling assumptions, are commonly visualized
through flow diagrams, with blocks representing compartments, and arrows repre-
senting interconnections or transport of states from one compartment to another.
Figure 4.48 illustrates a representative example of a three-compartmental model.

Under the configuration shown in Fig. 4.48, a compartmentalmodel can bewritten
in the following form:
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dx1
dt

= p11 f1(x1) + p31h(x3, x1)

dx2
dt

= p22 f2(x2) + p12h(x1, x2)

dx3
dt

= p33 f3(x3) + p23h(x2, x3),

(4.74)

where fi represents the internal dynamics of each compartment i , and h(x j , xi ) is
the interconnectivity function between compartment j and compartment i .

4.11.2 COVID-19 Modeling

Throughout history, humans have faced the challenges of serious diseases and pan-
demics. Some examples include: the Spanish flu of 1918, the Swine flu of 2009, and
most recently, the COVID-19 pandemic of 2020. Scientists all over the world have
developedmathematical models aimed at describing the spatio-temporal evolution of
infectious diseases. The hope is for the models to guide leaders to create preventive
measures and implement effective policy to eradicate the diseases.

The first compartmental model that forecasted the progress of an epidemic was
introduced by Kermack and McKendrick in 1927 [103]. The model contains three
compartments: S, I , ad R, or SI R for short. S represents the number of susceptible
individuals, while I is the number of infected cases, and R is the number of recovered
individuals. This partition leads to a compartmental model in the form of a system of
three differential equations describing the interactions between compartments. The
most common form of a SI R compartmental model is

d S

dt
= −β S

N I

d I

dt
= β S

N I − γ I

d R

dt
= γ I,

(4.75)

where β denotes the infectious rate, 1/γ is the average latent time, and N is the total
(assumed to be constant) population size, so that N = S(t) + I (t) + R(t).

In a recent attempt to model the dynamics of the COVID-19 virus, Dashtbali
and Mirzaie [104] extend the SIR to create a compartmental model that is tailored
to the characteristics of COVID-19, as observed empirically. The model contains
8 compartments that are account for individuals that are: (S) Susceptible, (M)

Semi-susceptible, (E) Exposed, (I ) Infected, (H)Hospitalized, (R)Recovered, (D)

Dead, and (V ) Vaccinated. The system of ODEs, written in dimensionless variables,
becomes:
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d S

dt
= −(1 − α)σ(t)SI − αS

d M

dt
= −σ(t)M I

d E

dt
= (1 − α)σ(t)SI + σM I − E

d I

dt
= E − I

d H

dt
= I − H

d R

dt
= H(t)

d D

dt
= H(t)

dV

dt
= αS(t),

(4.76)

where α accounts for vaccine coverage, the function σ(t) describes the impact of
social distancing, and N = S + E + I + H + R + D + V is the total population

Table 4.5 Parameter estimation for a 7-compartment model for COVID-19

Parameter Germany Italy Belgium Egypt Nigeria Japan

N (million) 80 60 11.5 102 195 126.5

σ 0.5 0.56 0.54 0.47 0.57 0.55

α 0.2–0.6 0.2–0.6 0.2–0.6 0.2–0.6 0.2–0.6 0.2–0.6

Fig. 4.49 Numerical simulations of a three-compartmental model for COVID-19 [104]
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size. Table 4.5 lists the parameters estimated based on the spread of the COVID-19
virus across seven different countries.

Figure 4.49 shows results of numerical simulations of the 8-compartment model
Eq. (4.76), carried out by Dashtbali and Mirzaie [104]. In one case, the compartment
associated with the number of semi-susceptible individuals is employed, and in the
other case it is omitted. Their simulations show that including the number of semi-
susceptible individuals produces significantly more accurate results.

4.12 Exercises

Exercise 4.1 Logistic Growth for U. S. Population: The logistic growth model
satisfies the ODE:

d P

dt
= r P

(
1 − P

M

)
, P(0) = P0,

where P(t) is the population at time t , r is the Malthusian growth rate, M is the car-
rying capacity, and P0 is the initial population. The table below gives the population
of the U. S. during the twentieth century (with the population given in millions).

Year Census Year Census Year Census
1900 76.2 1940 132.2 1980 226.5
1910 92.2 1950 150.7 1990 248.7
1920 106.0 1960 179.3 2000 281.4
1930 122.8 1970 203.3 2010 308.7

a. Solve the ODE and use the populations in 1900, 1930, and 1960 with t = 0 at
1900 to find the constants r , M , and P0.

b. Use this model to predict the population in 1990 and 2010. Taking the actual
census data as the best predicted value, find the percent error between the model
and the census data. (Use percent error as the signed relative error or 100×(model -
census)/census.) What is the predicted limiting population for the U.S. according to
this logistic growth model?

c. Repeat Parts a and b, using the populations in 1900, 1940, and 1980 with t =
0 at 1900 to find the constants r , M , and P0. How much does this change your
parameter values and how does this affect your predicted populations (1990, 2010,
and limiting)?

d. Use your general solution to the logistic growth model and find a nonlinear least
squares fit to the census data from 1900 to 1980 (with t = 0 at 1900) to find the best
fitting constants r , M , and P0. How much does this change your parameter values
and how does this affect your predicted populations (1990, 2010, and limiting)?
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e. Create a graph showing the data and the 3 models found above. Describe how
well the models fit the data. List both strengths and weaknesses of using the logistic
growth model and the different fits performed above.

Exercise 4.2 The logistic growth model satisfies the ODE:

d P

dt
= r P

(
1 − P

M

)
, P(0) = P0,

where P(t) is the population at time t , r is the Malthusian growth rate, M is the
carrying capacity, and P0 is the initial population. Microbial populations often fit this
model very well. The bacterium Staphylococcus aureus, a fairly common pathogen,
can cause food poisoning. Below are data from one experiment2, where a normal
strain is grown using control conditions and the optical density (OD650) is measured
to determine an estimate of the number of bacteria in the culture.

t (hr) OD650 t (hr) OD650 t (hr) OD650

0 0.032 2.0 0.170 4.0 0.309
0.5 0.039 2.5 0.229 4.5 0.327
1.0 0.069 3.0 0.261 5.0 0.347
1.5 0.110 3.5 0.288

Solve the ODE and use the data above to find the best fitting constants r , M , and P0,
i.e., a nonlinear least squares fit to the data. Create a graph showing the data and the
best fitting model and describe how well the model fits the data.

Exercise 4.3 Remifentanil is an opioid drug that acts very quickly and is rapidly
degraded by esterases. A bolus injection of 15 µ/kg was administered to a patient
and the plasma concentration was measured over a period of time. Data from the
experiment is given in the table below.

t R t R t R
1 53.15 7 5.56 25 0.76
2 28.25 8 3.96 30 0.57
3 18.82 10 3.02 40 0.39
4 11.19 12 2.2 60 0.23
5 8.93 15 1.72 90 0.13
6 7.13 20 1.17

where t is in min and R is the concentration of remifentanil in ng/ml.

a. Perform a least squares fit of a quadratic (3-parameter) model to the remifentanil
concentration in the plasma,

Q(t) = q0 + q1t + q2t 2.

2 Data from the laboratory ofAncaSegall at SanDiegoStateUniversity collected byCarlGunderson,
1998.
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Write the equation for this best-fitting model. Also, consider a 3-compartment model
for disappearance of remifentanil given by

C(t) = a1e−λ1t + a2e−λ2t + a3e−λ3t .

Suppose that other measurements suggest that the rapid distribution phase has λ1 =
0.6, the middle distribution phase has λ2 = 0.15, and the terminal/elimnation phase
has λ3 = 0.025. Perform a least squares fit to find the 3-parameters, a1, a2, and a3,
and write the formula with the best-fitting parameters in your model. Write the least
sum of square errors for each model. Create a graph of the data and these two models
using a logarithmic scale for the vertical axis (semilog graph). Which model appears
to fit the data best?

b. Perform the exponential peeling procedure separating out the data over the
ranges t ∈ [0, 7], t ∈ [8, 25], and t ∈ [30, 90]. Give the best fitting exponential mod-
els (using a linear least squares fit to the logarithms of the concentrations) over
these ranges, where you start with the terminal/elimination phase and subtract each
model from the data before computing the next exponential fit. Give the complete
3-compartment model using this exponential peeling procedure. Include the sum of
square errors for this model.

c. Start with the 6 parameters from the exponential peeling (3 coefficients and 3
exponents) and use MatLab’s fminsearch(Nonlinear Least Squares fit) to find the
best fitting parameters for the 3-compartment model. This procedure fails with a
direct least squares fit of the model to the data, so perform a least squares best fit
of the logarithm of the model to the logarithm of the data. Write this best fitting
model with its parameters and give the sum of square errors. Write a brief paragraph
comparing and contrasting the models in the entire problem and giving your opinion
on which ones are best from both how they fit the data and the computational effort.
Create a semilog graph including the data, the 3-compartment model from Part a,
the exponential peeling model from Part b, and the Nonlinear least squares best fit
model.

Exercise 4.4 Consider the following 2D problem:

L
d2 I

dt
+ R

d I

dt
+ 1

C
I = 0, (4.77)

where L , C > 0 and R ≥ 0 are parameters.
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(a) Transform the equation to a 2D linear system.
(b) Show that the (0, 0) equilibrium is asymptotically stable if R > 0 and neutrally

stable if R = 0.
(c) Classify the (0, 0) equilibrium depending on whether R2C − 4L is positive,

negative or zero. Sketch the phase portrait for each case.

Exercise 4.5 Consider the weak forced Duffing oscillator.

(a) Show the details of the van der Pol transformation, convertingDuffing’s equation
(4.42) into Sys. (4.43).

(b) Show the details of applying theMethod of Averaging to (4.43) in order to obtain
Sys. (4.44).

(c) Show the details of transforming the averaged system (4.44) in coordinates y1
and y2 into Sys. (4.45) in polar coordinate.

Exercise 4.6 The spruce budworm is a serious pest in eastern Canada, where it
attacks the leaves of the balsam fir tree. When an outbreak occurs, the budworms
can defoliate and kill most of the fir trees in the forest in about four years. In 1978
Ludwig proposed the following model to explain the outbreak of budworms:

d N

dT
= RN

(
1 − N

K

)
− P(N ) with P(N ) = B N 2

A2 + N 2
(4.78)

where A, B, K , R > 0. The parameter R represents growth rate and K the carrying
capacity. The term P(N ) represents the death rate due to predators (cf. birds).

(a) Plot a typical graph for P(N ) and give an ecological explanation for its shape
as well as the meaning of A and B.

(b) By rescaling time: t = τT and population: n = ηN , show that (4.78) can be
rewritten as

dn

dt
= rn

(
1 − n

k

)
− n2

1 + n2
. (4.79)

Find τ , η, k and r as a function of the original parameters A, B, K , R.
(c) Show that (0,0) is an equilibrium and determine its stability. Show that the

remaining equilibria of (4.79) happen at the intersection points of f (n) = n
1+n2

and g(n) = r
(
1 − n

k

)
. For a fixed value of k, sketch f (n) and the 5 possibilities

for g(n) such that, for increasing r , you have (i) 1, (ii) 2, (ii) 3, (iv) 2, and (v) 1
intersections between f and g.

(d) For each of the 5 cases in (c), label the fixed points, sketch the phase line and give
a detailed description of what you expect from the dynamics of the population.
(Do not attempt to find an explicit form for the fixed points.)
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Exercise 4.7 Consider the following 2D linear system of differential equations

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= ax + by

dy

dt
= cx + dy

for the following cases:

(a) a = 1, b = 3, c = 1, d = −1

(b) a = 4, b = −3, c = 1, d = 0

(c) a = −1, b = 2, c = −2, d = −1

(a) Find the solution for (x(t), y(t)) using eigenvalues/eigenvectors.
(b) Determine the stability of the origin.
(c) Sketch the phase plane with isoclines and eigenvectors.

Exercise 4.8 In several situations, due to nonlinearities, it is not possible, or too
cumbersome, to find an explicit form for the equilibrium points. Nonetheless, in
those cases the Jacobian matrix tends to have the simple form:

A =
(

a b
c d

)
a, b, c, d ∈ R (4.80)

(a) Using only the signs of the trace and the determinant of A what can you tell
about the stability of the equilibrium point?

(b) Using only the signs of a, b, c, d what can you tell about the stability of the
equilibrium point?

Exercise 4.9 A mathematical model that describes the motion of a swinging mass-
spring system is given by the following system of differential equations

Ld2θ

dt2
+ 2

d L

dt

dθ

dt
= −g sin(θ),

d2L

dt2
− L

[
dθ

dt

]2
= g cos(θ) − k

m
(L − L0),

(4.81)

where L0 is the unstretched length of the spring, m is the mass of the object, and k
is the spring constant.

(a) Transform (4.81) to a first-order system of differential equations and find all
equilibrium points.

(b) Characterize the stability of each equilibrium point. Find the characteristic equa-
tion and determine the eigenvalues.
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(c) Find the period of motion in the L direction and in the θ direction.

Exercise 4.10 Mathematical models for nonlinear oscillators are usually written in
the following form:

ẍ + ω2x = εg(x, ẋ, t, ε), x(t0) = a1, ẋ(t0) = a2.

Find a suitable transformation to write the equation above in standard form for
the method of averaging.

Exercise 4.11 Apply the method of averaging to study Mathieu’s equation:

ẍ + (1 + 2ε cos (2t))x = 0.

Exercise 4.12 Consider the equation:

ẍ + x = εẋ2 cos t.

Transform this equation to standard form and then apply the method of averaging
to study its solution. Plot the solution of the original equation obtained by numerical
integration and the solution produced by averaging. Compare the two solutions.

Exercise 4.13 Consider the following 1D model

ẋ = εx sin2 (t).

(a) Integrate the model equation to find an exact solution.
(b) Apply the method of averaging to find an approximate analytical solution.
(c) Compare the exact solutions against the averaged solution.

Exercise 4.14 Consider Mathieu’s equation

d2u

dt2
+ (δ + ε cos 2t)u = 0. (4.82)

(a) Use the generalized method of averaging to determine the equations describing
the slow variations in the amplitude and the phase.

(b) Write a MATLAB (or equivalent software) program to numerically integrate
(4.82). Graph (in one single plot) the averaged solution and the numerical solu-
tion. Explain the results.
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Exercise 4.15 Consider a simplified version of the nonlinear Mathieu’s equation

ẍ + (1 + ε cos t)x + εβx3 = 0.

Determine periodic solutions via averaging.

Exercise 4.16 Consider a bucket with a whole in the bottom. If at a given time you
see the bucket empty, can you figure out when (if ever) it was full? Explain your
answer.

Let h(t) represent the height of the water remaining in the bucket at time t . The
differential equation that models the leaky bucket is:

(Initial Value Problem)

⎧
⎨

⎩

dh

dt
= −k

√
h

h(0) = 1 (full bucket),
(4.83)

where k is an arbitrary constant that controls how fast the bucket becomes empty.
Perform the following tasks.

(a) Use separation of variables to find the explicit analytical solution to the initial
value problem in terms of te (time when the bucket becomes empty).

(b) Verify that your solution satisfies the Initial Value Problem.
(c) Sketch the solution in the x − t plane for different values of te.
(d) Explain why there are infinitely many solutions of the differential equation.

Exercise 4.17 Consider the model

ẋ = ε(1 − 2 cos θ)

θ̇ = x,

where x ∈ R, x(0) = x0, θ ∈ §1, and θ(0) = θ0.
Show that the error between the exact and the averaged solution grows like

(Δθ,Δx) ≈ (εt2, εt).

Exercise 4.18 In response to glucose, β-cells of the pancreatic islet secrete insulin,
which causes the increase use or uptake of glucose in target tissues such as muscle,
liver, and adipose tissue. When blood levels of glucose decline, insulin secretion
stops, and the tissues begin to use their energy stores instead. Interruption of this
control system results in diabetes. It is believed that electrical bursting plays an
important role in the release of insulin from the cell. A possible mechanism for
generating bursting behavior is through the FitzHugh-Nagumo model
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx

dt
= y − x3 + 3x2 + I − z

dy

dt
= 1 − 5x2 − y

dz

dt
= r

[
s

(
x + 1 + √

5

2

)
− z

]
,

(4.84)

where I is an input current applied to the cell, and r and s are positive parameters.

(a) Assume I = 0, z = 0 and r = 0. Observe that the first two equations decouple
from the last equation. Find all equilibrium points of the first two equations.

(b) Determine the local stability properties of all equilibrium points in part (a), and
sketch the phase plane (xy-plane) solutions using eigenvalues, eigenvectors„ and
nullcline curves.

(c) Repeat (a) and (b) with I = 0.4, I = 2, I = 4, and various values of z. Explain
how the phase plane solutions change as I and z change.

(d) Write a MATLAB program to integrate the full system of equations with the
same values of input current: I = 0.4, I = 2, and I = 4. For each value of I ,
produce the following graphs: (1) Time series of x(t), y(t), and z(t), all in the
same plot; (2) Phase plane diagrams: x versus y, x versus z, and y versus z, all
in the same plot.

(e) Write a brief explanation of your results relevant to the biological interpretation
of the model.

Exercise 4.19 MichaelCrichton in theAndromeda Strain (1969) states that “Asingle
cell of the bacterium E. coli would, under ideal circumstances, divide every twenty
minutes... It can be shown that in a single day, one cell of E. coli could produce a
super-colony equal in size and weight to the entire planet Earth”. A single E. coli has
a volume of about 1.7 µm3. The diameter of the Earth is 12,756 km, so assuming
it is a perfect sphere, determine how long it takes for an ideally growing colony
(Malthusian growth) of E. coli (doubling every 20 min) to equal the volume of the
Earth.

Exercise 4.20 Consider a modified version of the van der pol model

d2x

dt2
+ μ(x2 − 1)

dx

dt
+ x = a (4.85)

where μ and a are constant parameters.

(a) Convert the second order ODE to a first-order system of ODE’s.
(b) Analytically, calculate all equilibrium points and study their stability.
(c) Find the curves in (μ, a) parameter-space at which the eigenvalues of the lin-

earized Jacobian matrix J are purely imaginary, which is equivalent to the con-
dition: trace(J ) = 0 and det (J ) > 0. This locus of points is called a Hopf
bifurcation.
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(d) Sketch a diagram in the (μ, a) plane illustrating the change in stability of each
equilibrium point when both μ and a change. Sketch phase portraits of different
types of behaviors.

Exercise 4.21 Compute all equilbrium points of the best fitted two-species competi-
tion model Eq. (4.25) and perform a linear stability analysis. Write your conclusions
about the competition of the two species.

Exercise 4.22 Use the analysis of the Lotka-Volterra or Predator-Prey model to
explain why the application of DDT to control scale insects in the citrus industry
led to excessive application of the pesticide, which in turn resulted in many environ-
ment problems highlighted in the classic book that really started the environmental
movement, Rachel Carlson’s Silent Spring (referring to the devastation of the bird
populations). The citrus groves were rapidly invaded by scale insects, which caused
tremendous destruction until lady bugs, the scale insect’s natural predator, were
imported as a control. Give at least two reasons why use of pesticides result in esca-
lating use of pesticides that further put farmers in debt and only enrich the chemical
industry. Use modeling methods to show some smarter way to control an agricultural
pest.

Exercise 4.23 The Colpitts oscillator is a parallel nonlinear LC circuit that was
designed to be an almost sinusoidal oscillator [105]. Figure 4.50 shows a schematic
circuit diagram containing a feedback circuit built with a single bipolar junction
transistor, T (circle in themiddle), which acts as a gain element. The feedback occurs
because the output of the transistor is connected to its input in a feedback loop that
contains a resonant network made up of an inductor, L , and a pair of capacitors,
C1 and C2. The input-output characteristics of the transistor are responsible for the
nonlinear behavior of the entire circuit.

A distinguishing feature of the Colpitts oscillator is that the feedback for the active
device is taken from a voltage divider made of two capacitors in series across the
inductor. This design leads to a circuit with high quality factor, which in turn yields
better frequency stability. Additionally, these type of nonlinear oscillators can also
perform in a large frequency bandwidth, ranging from a few Hertz all the way up to
the gigahertz range.

In this exercise you will derive the model equations of a Colpitts oscillator. The
state variables that determine the evolution of the circuit at any time are: the transistor
collector voltage, VC1 , and the voltage across the second capacitor, VC2 , and the
current, IL in the inductor L . The modeling process requires the following steps.

a. In this first part, you will derive the governing equation for the voltage, VC1 ,
across the capacitorC1. The current-voltage relation, IC1 − VC1 , across the capacitor,
C1, indicates that

C1
dVC1

dt
= IC1 .

Using Kirchhoff’s first law of currents, show that

IC1 = IL − αIE ,
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Fig. 4.50 Schematic circuit
diagram for a Colpitts
oscillator

where IE is the current in the base-emitter, B-E, given by

IE (VB E ) = IS

α
exp

(
VB E

VT

)
,

in which α is the common-base forward short-circuit current gain of the transistor,
IS is the saturation current of the B-E junction, VB E is the voltage across the B-
E junction, and VT = kbT/q is the thermal voltage with kb being the Boltzmann
constant, T is the absolute temperature expressed in Kelvin degrees, and q is the
electron charge.

b. Now you will do something similar for obtaining an evolution equation for the
variations of the voltage, VC2 , across the second capacitor C2. The current-voltage
relation, IC2 − VC2 , across the capacitor, C2, indicates that

C1
dVC1

dt
= IC2 .

Using Kirchhoff’s first law of currents, show that

IC2 = IL − αI0 − G0VC2 + (1 − α)IE (−VC2),

where G0 is a parasitic conductance G0.
c. Now, you will derive an equation for the voltage, VL , across the inductor. Apply

Kirchhoff’s second law of voltage to show that

VCC = VL + VC1 + VC2 + VRL .
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Substitute VRL = RIL and VL = L d IL
dt , to write a differential equation for d IL

dt .
You should have now arrived to a mathematical model for the Colpitts oscillator

in the form:

C1
dVC1

dt
= IL − αI (−VC2)

C2
dVC2

dt
= IL − αI0 − G0VC2 + (1 − α)IE (−VC2)

L
d IL

dt
= −VC1 − VC2 − RIL + VCC .

(4.86)

d. Show that the model Eq. (4.86) has one unique equilibrium, (V ∗
C1

, V ∗
C2

, I ∗
L).

Write the equilibrium in terms of IE (−V ∗
C2

). The value, |V ∗
C2

| represents the threshold
voltage of the B-E junction. This leads to two modes of operation of the Colpitts
oscillator. One where, VB E > |V ∗

C2
|, in which the transistor conducts, i.e., IE > 0.

And one where, VB E < |V ∗
C2

|, in which the transistor is cut off, i.e., IE ≈ 0.
e. Derive a dimensionless version of the model Eq. (4.86) as follows. Shift the

origin of the phase-space coordinates to the equilibrium point (V ∗
C1

, V ∗
C2

, I ∗
L) of

Eq. (4.86) by applying the transformation:

x1 = VC1 − V ∗
C1

VT
, x2 = VC2 − V ∗

C2

VT
, x3 = IL − I ∗

L

I0
,

and by re-scaling time by

τ = ω0t, ω0 = 1
√

L
C1C2

C1 + C2

,

where ω0 represents the resonant frequency of the circuit. Show that the dimension-
less model takes the form

dx1
dτ

= g

Q(1 − κ)

[−α
(
e−x2 − 1

)+ x3
]

dx2
dτ

= g

Qκ

[
(1 − α)

(
e−x2 − 1

)+ x3
]− Q0(1 − κ)x2

dx3
dτ

= − Qκ(1 − κ)

g
(x1 + x2) − 1

Q
x3,

(4.87)

where the parameters κ, Q0, Q and g are defines as

κ = C2

C1 + C2
, Q0 = G0ω0L , Q = ω0L

R
, g = I0L

VT R(C1 + C2)
.
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An advantage of these dimensionless coordinates is that the subspace x2 < 0
is associated with the active or conductive mode of the transistor, while x2 > 0
corresponds to the cut-off mode.

f. We can further reduce the number of parameters in the dimensionless model by
assuming an ideal current bias, where G0 → 0, which, in turn, implies that Q0 → 0.
If we neglect the base current of the transistor, so that α = 1, we can obtain an ideal
model in the form

dx1
dτ

= g

Q(1 − κ)

[
1 − e−x2 + x3

]

dx2
dτ

= g

Qκ
x3

dx3
dτ

= − Qκ(1 − κ)

g
(x1 + x2) − 1

Q
x3.

(4.88)

In this model the trivial equilibrium (0, 0, 0) corresponds to the equilibrium point,
(V ∗

C1
, V ∗

C2
, I ∗

L). Calculate the Jacobian matrix of the linearization of Eq. (4.88) about
the trivial equilibrium point (0, 0, 0). Compute the eigenvalues of the characteristic
polynomial associated with the Jacobian matrix. Perform computer simulations to
show that oscillations do not exist when g < 1, while stable oscillations exist for
g > 1, independently of the parameter Q.

Exercise 4.24 Crystal Oscillator. In this exercise we will explore an alternative
derivation to the averaged equations for a crystal oscillator.

(a) Let us start with a dimensionless derivation of the model equations. Re-scale

time by t = √
L1C1τ . Let Ω2

1 = 1, Ω2
2 = L1

L2

C1
C2
, Lr = L1

L2
, and ε =

√
C1
L1
, and

relabel τ as time t . Then show that Eq. (4.62) becomes:

d2i1
dt2

+ Ω2
1 i1 = ε

{
−R1

di1
dt

+ [
a − 3b

(
i1 + i2

)2]
[

di1
dt

+ di2
dt

]}

d2i2
dt2

+ Ω2
2 i2 = εLr

{
−R2

di2
dt

+ [
a − 3b

(
i1 + i2

)2]
[

di1
dt

+ di2
dt

]}
.

(4.89)

(b) Show that the invertible transformations

i1 = x1 cosφ1; i ′
1 = −Ω1x1 sin φ1;

i ′′
1 = Ω1x ′

1 sin φ1 − Ω2
1 x1 cosφ1 − Ω1x1ψ′

1 cosφ1;
i2 = x2 cosφ2; i ′

2 = −Ω2x2 sin φ2;
i ′′
2 = Ω2x ′

2 sin φ2 − Ω2
2 x2 cosφ2 − Ω2x2ψ′

2 cosφ2;
φ1 = Ω1t + ψ1; φ2 = Ω2t + ψ2,

(4.90)
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allow us to rewrite Eq. (4.89) in the following form.

⎡

⎣
x′
ψ′

φ′

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦+ ε

⎡

⎣
X[1](x,φ, ε)
[1](x,φ, ε)

0

⎤

⎦ , (4.91)

where x = (x1, x2), φ = (φ1,φ2), ψ = (ψ1,ψ2), 0 = (Ω1,Ω2), X[1] = (X [1]
1 ,

X [1]
2 ) and [1] = (Ω

[1]
1 ,Ω

[1]
2 ). Explicitly:

X [1]
1 = 1

Ω1

{
R1Ω1x1 sin φ1+

[
a − 3b

(
x1 cosφ1 + x2 cosφ2)

2][− Ω1x1 sin φ1 − Ω2x2 sin φ2
]}

sin φ1

X [1]
2 = Lr

Ω2

{
R2Ω2x2 sin φ2+

[
a − 3b

(
x1 cosφ1 + x2 cosφ2)

2][− Ω1x1 sin φ1 − Ω2x2 sin φ2
]}

sin φ2

Ω
[1]
1 = 1

Ω1x1

{
R1Ω1x1 sin φ1+

[
a − 3b

(
x1 cosφ1 + x2 cosφ2)

2][− Ω1x1 sin φ1 − Ω2x2 sin φ2
]}

cosφ1

Ω
[1]
2 = Lr

Ω2x2

{
R2Ω2x2 sin φ2+

[
a − 3b

(
x1 cosφ1 + x2 cosφ2)

2][− Ω1x1 sin φ1 − Ω2x2 sin φ2
]}

cosφ2

(c) Observe that now the first two equations in (4.91) are in standard form [26].
Apply the method of averaging over the phase variables to obtain:

⎡

⎣
x′
ψ′

φ′

⎤

⎦ =
⎡

⎣
0
0

Ω0

⎤

⎦+ ε

⎡

⎢⎣
X̄

[1]
(x,φ)

Ω̄
[1]

(x,φ)

0

⎤

⎥⎦ , (4.92)

where

X̄
[1]

(x,φ) = 1

(2π)2

∫

T2
X[1](x,φ, 0) dφ1 dφ2

Ω̄
[1]

(x,φ) = 1

(2π)2

∫

T2
Ω [1](x,φ, 0) dφ1 dφ2.

Simplify and show that Ω̄
[1]

(x,φ) = (0, 0), i.e., ψ′
1 = ψ′

2 = 0, so that the aver-
aged system (4.92) can be re-written as
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x ′
1 = ε(a − R1)x1 − ε

3b

4

(
x2
1 + 2x2

2

)
x1

x ′
2 = εLr (a − R2)x2 − εLr

3b

4

(
x2
2 + 2x2

1

)
x2

φ′
1 = Ω1

φ′
2 = Ω2.

(4.93)
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Chapter 5
Bifurcation Theory

Bifurcation theory is the study of the changes in the number of solutions and the
type of solutions to models as parameters are varied. The term bifurcation was first
introduced by Henri Poincaré in 1885 [1] to describe the relatively subtle changes
in stationary points of a model. However, there are situations in a system where
sudden and “catastrophic” changes occur, such as the collapse of theTacomaNarrows
Bridge [2], see Fig. 5.1.

René Thom introduced catastrophe theory [3, 4] as a special case of bifurca-
tion theory or singularity theory. In particular, Thom identified equilibria with the
minimumof a potential function to study the changes in behavior in gradient systems.

Chapters 3 and 4 illustrated variousmodels, using discrete and continuous dynam-
ical systems. These models were shown to exhibit a variety of behaviors, and the
mathematical analyses centered on examining the equilibria and linearization about
these equilibria to determine stability of the model system. The models are con-
nected to real world data by varying the kinetic parameters in the systems. This
chapter explores the changes that can occur to the behavior of the state variables
when the parameters vary. The study of those changes is based on bifurcation theory,
and it includes both, discrete and continuous dynamical systems.

This chapter explores a variety of discrete and continuous models, where changes
in parameters result in different types of behavior reflected in the state variables.
We present a number of examples, then introduce fundamental definitions of sev-
eral generic types of bifurcations. Readers interested in a more in-depth treatment
of bifurcation theory are encouraged to study Guckenheimer and Holmes [5], Wig-
gins [6], and Chow andHale [7] andmore specific studies in pattern formation theory
by Hoyle [8] and Murray [9].
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Fig. 5.1 Collapse of the Tacoma Narrows bridge. Source: Wikipedia

5.1 Examples and Phase Portraits

Mathematically, a bifurcation occurs if the phase portrait of the model system
changes its topological structure as one or more system parameters are varied (see
Sect. 4.3.3). Algebraic systems have the form

f (x,λ) = 0, x ∈ R
n, λ ∈ R

p, f (x) ∈ R
m,

where λ ∈ R
p is a vector of parameters (with p components) for tuning the model.

These are called bifurcation parameters, and the point at which changes occur is
called the bifurcation point. Discrete models (see Chap. 3) with parameters are writ-
ten:

xn+1 = f (xn,λ). (5.1)

Parameterized systems of Ordinary Differential Equations (ODEs) (see Chap. 4)
have the form:

dx
dt

= f (x,λ), (5.2)

while a system of Partial Differential Equations (PDEs) (see Chap. 8)

∂u(x, t)
∂t

= F(u(x, t),λ). (5.3)

Themathematical analyses of thesemodels for fixed parameters were examined in
Sects. 3.4 and 4.3. This chapter studies qualitative changes as λ varies. For example,
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a change in λ in (5.1) or (5.2) might result in the loss of stability of a fixed point
of (5.1) or an equilibrium of (5.2). Below are some illustrative examples before we
present some important definitions and theorems.

The discrete logistic growth model was examined in some detail in Sect. 3.8. That
example showed that a simple scalar quadratic map exhibited a process called period
doubling as only the parameter for growth rate was increased. For a range of values
the growth rate caused the output of the logistic growth model to become chaotic
and appear random. The example below examines a discrete polynomial map in two
dimensions with five-fold symmetry and displays a high degree of complexity.

Example 5.1 (Sand Dollar) Discrete models with symmetry can exhibit long-term
behavior, in the form of attractors, with pattern-forming characteristics appearing
in the time-average of a chaotic dynamical system. In this example, we explore,
throughout numerical simulations, the pattern forming characteristics, and changes
in the attractor, of a symmetric discrete dynamical system. But first, let us discuss
briefly the role of symmetry.

Symmetry is a geometrical concept that refers to the set of transformations that
leave an object unchanged. In a mathematical model, those transformations typically
form a group of symmetries, while the object itself is the mathematical equation that
defines the model. Consider a discrete dynamical system of the form

zn+1 = f (zn,λ), (5.4)

where zn ∈ Cm andλ ∈ Cp is a vector of parameters. LetΓ be a set of invertible linear
transformations of the vector space Rn into itself. This is equivalent to saying that Γ
is a matrix group, i.e., closed under multiplication. The mathematical model (5.4) is
said to have Γ -symmetry if

f (γzn,λ) = γ f (zn,λ),

for all z ∈ R
m and for all γ ∈ Γ . For the case of Γ = DN -symmetry, where DN is

the orthogonal group of symmetries of an N -gon, the standard action of the group,
DN is: γ1z = z̄, γ2z = e2πi/N z, where z ∈ C. In this action, γ1 represents a reflection
across the real-axis, while γ2 describes a cyclic rotation along the unit circle. It can be
shown that the general form of a DN discrete model under the group DN = {γ1, γ2}
has the form:

zn+1 = p(u, v,μ)zn + q(u, v,λ)z̄N−1
n , (5.5)

where p and q are polynomial functions of u = |zn|2 and v = zNn + z̄Nn , and μ is
a vector of parameters. This means that the right-hand side of Eq. (5.5) satisfies
f (γzn,λ) = γ f (zn,λ), where γ = γ1 or γ = γ2. A specific discrete model with
D5-symmetry is

zn+1 = (λ + αu + βv) zn + γ z̄4n, (5.6)
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Fig. 5.2 Sanddollar generatedby the discretemodelEq. (5.6). Parameters are:λ = −2.34,α = 2.0.
Subfigures b–d showcase the variations in the long-term attractor as the following parameters vary:
a β = 0.2, γ = 0.1; b β = 0.4, γ = 0.1; c β = 0.2, γ = 0.25; d β = 0.2, γ = −0.08

where u = |zn|2, and v = z5n + z̄5n . The long-term behavior of this model leads to a
pattern forming system, which is illustrated in Fig. 5.2.

Example 5.2 (Euler’s Beam Column) Euler’s column buckling experiment, illus-
trated in Fig. 5.3, consists of an elastic beam subjected to a compressive force. With
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Fig. 5.3 Euler beam
experiment. An elastic beam
is subjected to a compressive
force. Upon reaching a
certain threshold value of the
compressive force, the trivial
solution, unbuckled state,
loses stability and a buckled
state, right or left, emerges
through a pitchfork
bifurcation. Source:
Wikipedia

a critical compressive force (bifurcation point) the beam deforms into one of two
buckled stationary states, either to the right or to the left.Which state appears depends
onmodel-dependent features, such as material imperfections or thermal fluctuations.
According to Bernoulli-Euler beam theory, [10, 11] a mathematical model for the
angle, θ(t), between the undeformed rod and the tangent of the deformed rod with
hinged boundary conditions is

E Iθ
′′
(x) + P sin θ(x) = 0, θ(0) = 0, θ(L) = 0, 0 < x < L ,

(5.7)
where x is the material coordinate, E is the elastic modulus, I is moment of inertia,
P is the compressive force, and L is the length of the beam.

Equation (5.7) is a second order nonlinear boundary value problem with several
parameters. This model is studied with a reduced order model, using a procedure
called Lyapunov-Schmidt reduction [12]. (Details are discussed in Chap. 10.) The
reduced order model satisfies:

dx

dt
= λ x − x3. (5.8)

This is a phenomenological model, where the original material-related parameters
E , I , and P have been “washed away,” leaving one parameter, λ. This parameter
idealizes the effect of the compressive force and the buckling phenomenon. When
λ = 0 (absence of the compressive force), there is only one solution to the algebraic
equation f (x,λ) = λx − x3 = 0, so only one equilibrium, xe = 0. However, when
λ > 0, there are three equilibria, xe = 0,±√

λ, where nonzero equilibria correspond
to the two possible buckled states. Figure 5.4 illustrates the changes in the phase
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Fig. 5.4 Bifurcations in a phenomenological model for the buckling phenomenon of the Euler
beam experiment where, λ represents the effects of a compressive force. (Left) In the absence
of such force, the beam remains in its resting state, so solution trajectories in the phase portrait
asymptotically converge towards zero. (Right) When λ > 0, the force causes the beam to buckle
to the right or left (xe = ±√

λ). Which of these two states appears depends on initial conditions of
integration. In the experiments, the buckled state is determined by material imperfections

portrait of the reduced order model (5.8). Each curve in the diagram corresponds
to a solution trajectory from numerically integrating (5.8) with a particular initial
condition. Observe that when λ > 0, the zero solution (unbuckled state) exists, but is
unstable. This is because xe = 0 represents an ideal state in which the beam simply
collapses. It is possible for this state to occur but material imperfections make it
highly unlikely.

The example above is a scalar ODE with a single parameter, and the bifurca-
tion occurs as the parameter varies and the number of equilibria changes. Chapter 4
showed the example of the Duffing oscillator (Sect. 4.8.3), where varying the elas-
tic properties affects the number of equilibria, while varying the damping strength
changes the qualitative behavior of the solution trajectories. The next example
explores a chemical system of two ODEs, where parameter changes alter qualitative
behavior between stable and oscillatory behavior.

Example 5.3 (The Brusselator Model) The Brusselator model was originally pro-
posed by Prigogine and Nicolis [13] for describing an autocatalytic reaction in the
form:

α
k1−−→ X, 2X + Y

k2−−→ 3X,

β + X
k3−−→ Y + D, X

k4−−→ E,

where α and β are reactants (substrates), D and E the final products, and X and Y
are the autocatalytic reactants. The kinetic constants are ki , i = 1 . . . 4.

Let [·] denote concentrations of a chemical species, then the chemical reactions
above are readily converted into ODEs for any of the species using the law of mass
action. The law of mass action, based on the frequency of molecular collisions,
states that the rate of change of the concentration of a substance is proportional with
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rate, ki , to the product of the concentrations of the different chemical species in the
reactions that contain the substancewith the sign depending onwhether the substance
is produced or lost.

The resulting ODEs for [X ] and [Y ] are found to be:

d[X ]
dt

= k1[α] + k2[X ]2[Y ] − k3[β][X ] − k4[X ]

d[Y ]
dt

= −k2[X ]2[Y ] + k3[β]X,

where the concentrations α > 0 and β > 0 are assumed to be constant. Letting k3 =
k4 and k1k3/k2 = k33/k

2
2 = 1 and nondimensionalizing the above equations leads to

the more familiar form of the Brusselator model given by

dX

dt
= X2Y − (1 + β)X + α,

dY

dt
= −X2Y + β[X ],

(5.9)

whereα andβ are positive real constants,while X,Y ∈ R represent the dimensionless
concentrations of the two original reactants.

The Brusselator model (5.9) has a unique equilibrium at (Xe,Ye) = (α,β/α).
Figure 5.5 shows some representative trajectories of the 2Dphase portraits. Forα = 1
and β = 1.7, the equilibrium is stable, as nearby solutions asymptotically approach
it. Increasing β to 3, while holding α fixed, makes the equilibrium become unstable
and the solution trajectories now approach a stable limit cycle. This is an example of
a bifurcation with a transition from a stable equilibrium to a stable periodic solution.
Themechanism that underlies the changes to oscillatory behavior is known as a Hopf
bifurcation, which is detailed later in Sect. 5.5.

5.2 Conditions for Bifurcations

The examples above show that bifurcations occur when parameters vary in a dynam-
ical system, which result in changes in the number of equilibria or the qualitative
behavior near the equilibria. Most models are nonlinear, and a complete study of the
types of behavior over all model parameters is practically impossible. However, we
are often interested in specific phenomena where there are changes occurring for a
limited range of conditions reflected in the model parameters. This chapter studies
which types of transitions are likely for particular forms of models, such as changing
the number of equilibria or the appearance of a periodic solution. These bifurca-
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Fig. 5.5 Phase portraits of the Brusselator model (5.9) illustrate a Hopf bifurcation, where changes
in β result in the qualitative behavior difference of a stable equilibrium point (left) and a stable
periodic solution (right). Parameters are: (Left) α = 1.0, β = 1.7. (Right) α = 1.0, β = 3.0

tions occur generically in discrete models, ODEs, and more complicated models,
like PDEs.

Though a bifurcation may require variations in multiple parameters, for sim-
plicity we begin by examining a scalar parameter, λ ∈ R. The Implicit Function
Theorem [14] for a scalar satisfies the following:

Theorem 5.1 (Implicit Function Theorem for R2) Consider a continuously dif-
ferentiable function, f : R2 → R and a point (x0,λ0) ∈ R

2 so that f (x0,λ0) = c.
If ∂ f

∂x (x0,λ0) �= 0, then there is a neighborhood of (x0,λ0) so that whenever x is
sufficiently close to x0, there is a unique λ so that f (x(λ),λ) = c. Moreover, this
assignment makes x a continuous function of λ.

This theorem generalizes to higher dimensions and even function spaces. Figure 5.6
illustrates geometrically the results of the Implicit Function Theorem for R2, where
we take c = 0. The figure shows that around a small neighborhood of (0, 0), small
changes in the parameter λ lead to smooth changes in the location of the x .

If we consider x ∈ R in the ODE (5.2), then equilibria are found by solving the
algebraic equation:

f (x,λ) = 0, x, f (x) ∈ R. (5.10)

As noted in Chap. 4, finding equilibria can be a difficult problem. However, the
Implicit Function Theorem states that if there exists (x0,λ0) satisfying (5.10), so that
x0 is an equilibrium and if ∂ f

∂x (x0,λ0) �= 0, then in a neighborhood of x0, there exists a
continuous function x(λ)with f (x(λ),λ) = 0. It follows that locally the equilibrium
changes smoothly in λwith x(λ) defining a curve of equilibria parametrized by λ, so
no bifurcation occurs to a different number of equilibria. From the Implicit Function
Theorem, it follows that a bifurcation at (x0,λ0) leading to a different number of
equilibria requires the condition:

∂ f

∂x
(x0,λ0) = 0.
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Fig. 5.6 The Implicit Function Theorem implies that a solution x(λ) to the algebraic equation
f (x,λ) = 0 exists in a neighborhood of a known solution (0, 0). To have a bifurcation the Implicit
Function Theorem must fail

Note that if we define g(x,λ) = f (x,λ) − x in Eq. (5.1), then a similar analysis
applies to discrete models.

We formally define the following bifurcation condition.

Definition 5.1 (Bifurcation Condition) Consider a mathematical model in the form
of an Ordinary Differential Equation

dx

dt
= f (x,λ), x,λ ∈ R

Assume (x0,λ0) to be an equilibrium.To have bifurcations in the number of equilibria
of the model the following equations must be solved simultaneously

f (x,λ) = 0 and fx (x,λ) = 0, (5.11)

where f and fx are evaluated at (x0,λ0).

5.3 Codimension of a Bifurcation

We examine how many parameters must be simultaneously varied in the model to
observe a change. The number of parameters that must be varied to observe a change
in a system’s behavior, so that a bifurcation occurs, is known as the codimension of
a bifurcation. More precisely, the codimension is defined as follows.
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Definition 5.2 The codimension of a bifurcation is the smallest dimension of the
parameter space in which the type of bifurcation persists. Equivalently, the codi-
mension of a bifurcation is the number of equality conditions that characterize a
bifurcation [5].

Consider the model of the Duffing oscillator (4.37)which has four parameters α,
β, γ and δ. The phase portraits in Fig. 4.24 illustrate two types of bifurcations. It is
assumed that α > 0 is fixed and γ = 0, so the parameters of interest are (β, δ). As β
varies from positive to negative with δ fixed, the qualitative behavior changes from
one equilibrium to three equilibria (pitchfork bifurcation). Since this only uses one
parameter, it is a codimension 1 bifurcation at β = 0. When δ changes from positive
to zerowithβ > 0, the qualitative behavior varies from a stable node to periodic solu-
tions (Hamiltonian Hopf bifurcation), which again only has one parameter varying,
so is a codimension 1 bifurcation at δ = 0.

The codimension of a particular bifurcation is theminimumnumber of parameters
that are varied for some model. Whenever one observes a specific qualitative change
or bifurcation in a model, then necessarily that change results from the same number
of parameters of all related generic models undergoing that type of bifurcation. This
allows one to study the changes in behavior in a model under a common underlying
mechanism.

5.4 Codimension One Bifurcations in Discrete Systems

Consider discrete models of the form:

xn+1 = f (xn,λ), (5.12)

where x ∈ R
n ,λ ∈ R is the bifurcation parameter, and f : Rn × R → R

n is a smooth
map with respect to both x and λ. Since λ ∈ R, it follows that any bifurcations are
codimension 1, which is the concentration of our study in this section.

Let J (x,λ) be the Jacobian matrix for f . A local bifurcation occurs at (xe,λc) if
J (xe,λc) has an eigenvalue, σ with |σ| = 1. If σ = 1, then the bifurcation involves
equilibria or fixed points and the associated types are saddle-node, transcritical, or
pitchfork bifurcations. If σ = −1, then the bifurcation involves the emergence of
period-doubling solutions. Otherwise, if a pair of complex eigenvalues crosses the
unit circle, so |σ1,2| = 1, then the bifurcation is aHopf bifurcation for discretemodels
and is known as a Neimark-Sacker bifurcation.
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5.4.1 Continuability

For a discrete model (5.12), the existence of a bifurcation is closely connected to
the concept of continuability and uses information from the Implicit Function The-
orem 5.1.

Definition 5.3 (Continuability) Let f : Rn × R → R
n be a smoothmap onRn × R.

Assume xe to be an equilibrium or fixed point, such that

f (xe,λ) = xe. (5.13)

Then the equilibrium xe(λ) is locally continuable if it lies on a continuous path in λ.

A bifurcation in a discrete system (5.12) occurs when the equilibrium, xe(λ), can
no longer be uniquely continued as λ varies. This is formalized in the following
theorem.

Theorem 5.2 Consider the discrete model (5.12), where f : R × R → R. Let xe
be an equilibrium, satisfying (5.13). If ∂ f

∂x (xe,λc) �= ±1, then (xe,λc) is locally
continuable.

The proof of this theorem follows from applying the Implicit Function Theo-
rem 5.1 to g(x,λ) = f (x,λ) − x . It is readily extended to higher dimensions where
x ∈ R

n with generalizations of Theorem 5.1. This theorem shows that for a bifurca-
tion to occur at an equilibrium, xe, then

∂ f
∂x (xe,λc) = ±1 for some λc. We explore

several models and various types of codimension one bifurcations that occur in dis-
crete systems (5.12).

5.4.2 Saddle-Node Bifurcation

The logistic growth model (3.8) is commonly used for population studies and often
forms the basis for agencies managing animal populations. Consider an extension of
the logistic growth model, where a term is included for constant harvesting, h, so

pn+1 = pn + rpn
(
1 − pn

M

)
− h = f (pn, h). (5.14)

This model is appropriate for some species growing logistically and at each discrete
time period a constant population (hunting or fishing limits), h, is removed.

Figure 5.7 shows simulations of the logistic growthmodelwith constant harvesting
(5.14) where r = 0.2, M = 100, and various values of h. When h = 0, then we
observe the model approaching its natural carrying capacity, M . As h increases, this
largest equilibrium decreases, and as expected, if the constant removal of the species
is sufficiently high, then the species goes extinct. A serious weakness in this model
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Fig. 5.7 The figure on the left shows simulations of the logistic growth model with constant
harvesting (5.14) where r = 0.2, M = 100, and various values of h. Across the range of h there is
a distinct change in behavior between a stable steady state to populations going extinct. The right
figure shows a bifurcation diagram illustrating the equilibria as h varies with a bifurcation point at
h = 5. The equilibria along the solid line are stable equilibria, while those on the dashed line are
unstable

is that as populations get small, then harvesting a constant number becomes difficult,
so is unrealistic. In fisheries management, the regulatory agency wants to set the limit
of fish caught to be sustainable, but allow adequate catch for the fishermen to make
their living, which often are conflicting goals.

The equilibria for (5.14) are found solving the quadratic, pe = f (pe, h), so

pe = M
2 ±

√
M2

4 − Mh
r ,

which are the two equilibria, provided two real solutions exist. When h = 0, we
get the results from Chap. 3 with pe = 0, the unstable extinction equilibrium, and
pe = M , the stable carrying capacity equilibrium. The right graph in Fig. 5.7 shows
the continuous change in these equilibria as h varies. When h = rM/4, then the two
equilibria coalesce at pe = M/2, so it is a bifurcation.

For h > rM/4, no real solutions exist, so there are no equilibria for the model
(5.14). This bifurcation is called a saddle-nodeorblue sky bifurcation. For this logistic
growth model with constant harvesting (5.14), the larger equilibrium is stable, while
the smaller equilibrium is unstable. Note that

∂ f

∂ p
(p, h) = 1 + r − 2rp

M
, so

∂ f

∂ p
(M/2, rM/4) = 1.

Thus, this example satisfies the conditions for a bifurcation at pe = M/2.
Saddle-node bifurcations are generic among codimension-one bifurcations in dis-

crete systems. The following theorem provides the conditions for the existence (and
direction) of a saddle-node bifurcation.

Theorem 5.3 (Saddle Node Bifurcation) Let f : R × R → R with
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f (xe,λc) = xe and f ′(xe,λc) = 1, (bifurcation condition)

A = ∂ f

∂λ
�= 0 and D = ∂2 f

∂x2
�= 0, (nondegeneracy condition)

where all derivatives are evaluated at the bifurcation point (xe,λc). Then two curves
of fixed points emanate from (xe,λc). The new fixed points exist for λ > λc, if DA <

0, and for λ < λc, if DA > 0. The upper branch of fixed points is stable and the
lower one is unstable, if D < 0, and the stabilities are reversed if D > 0.

The proof of this theorem relies on the Implicit Function Theorem 5.1 and details
are found in [15]. We apply this theorem to the logistic growth model with constant
harvesting (5.14), where the bifurcation conditions were shown above at (pe, hc) =
(M/2, rM/4). The nondegeneracy conditions for this model are

A = ∂ f

∂h
= −1 �= 0 and D = ∂2 f

∂ p2
= −2r

M
�= 0.

It follows that DA = 2r/M > 0, which implies the fixed point emanate to the left
with h < hc, as seen in the right diagram in Fig. 5.7. In addition, with D < 0,
Theorem 5.3 gives the upper branch of equilibria is stable, while the lower branch is
unstable as depicted in Fig. 5.7.

Example 5.4 Consider the generic discrete model given by:

xn+1 = λ − x2n .

Equilibria are found by solving xe = λ − x2e or (xe + 1
2 )

2 = λ + 1
4 , so

xe = − 1
2 ±

√
λ + 1

4 .

It follows that λ < − 1
4 has no real solutions, so a saddle node bifurcation occurs at

λc = − 1
4 with xe = − 1

2 . Since

∂ f
∂x (x,λ) = −2x, it follows ∂ f

∂x (xe,λe) = 1.

Thus, this example satisfies the bifurcation condition of Theorem 5.3. Checking the
degeneracy conditions, we find

A = ∂ f
∂λ (xe,λe) = 1, and D = ∂2 f

∂x2 (xe,λe) = −2.

Since DA = −2 < 0 and D < 0, Theorem 5.3 states that new fixed points emanate
to the right, λ > − 1

4 , and the upper branch of fixed points are stable, while the lower
branch is unstable. Figure 5.8 shows the bifurcation diagram for this example.

The Continuability Theorem 5.2 shows that the stable branch of equilibria has

continuous stable equilibria, xe(λ), provided
∣∣∣ ∂ f

∂x (xe,λ)

∣∣∣ < 1. For this example, this
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Fig. 5.8 This figure presents
the bifurcation diagram for
Example 5.4. This
saddle-node bifurcation at
the leftmost circle has stable
equilibria with solid lines
and unstable equilibria with
dashed lines. The other
circles denote additional
bifurcation points, where
period doubling occurs
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stable branch satisfies:
∣∣∣ ∂ f

∂x (xe,λ)

∣∣∣ = | − 2xe| = |1 − √
4λ + 1| < 1.

Solving this inequality gives − 1
4 < λ < 3

4 , which is the domain for this branch of
stable equilibria. A similar argument with the Continuability Theorem 5.2 gives
the same domain for the unstable branch of equilibria seen in Fig. 5.8. At λb = 3

4 ,
another bifurcation occurs, a period doubling bifurcation, which is studied later in
this chapter.

5.4.3 Transcritical

The previous section introduced the logistic growth model with constant harvesting
(5.14), which is based on controlled hunting or fishing that removes a fixed number of
animals in a given timeperiod.A related logistic growthmodel considers proportional
harvesting, such as when fish are caught by nets, so the removal is proportional to
the existing population. This model satisfies the discrete model:

pn+1 = pn + rpn
(
1 − pn

M

)
− hpn = f (pn, h), (5.15)

where h presents the intensity of the proportional harvesting. This model better
represents how hunting and fishing occurs when there are lower densities of the
species. This model fails for larger populations, as there are limits to how much can
be harvested for a number of reasons, such as limited markets or storage in a boat.

Figure 5.9 shows simulations of the logistic growth model with proportional
harvesting (5.15) where r = 0.2, M = 100, and various values of h. As before
when h = 0, the model approaches its natural carrying capacity, M . As h increases,
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Fig. 5.9 The figure on the left shows simulations of the logistic growth model with proportional
harvesting (5.15) where r = 0.2, M = 100, and various values of h. Across the range of h there is
a linear decline in the carrying capacity of the stable steady state population until it goes extinct.
The right figure shows a bifurcation diagram illustrating the equilibria as h varies with a bifurcation
point at h = 0.2. The equilibria along the solid lines are stable equilibria, while those on the dashed
line are unstable

this largest equilibrium decreases linearly, since this is equivalent to proportionally
decreasing the Malthusian growth rate, r . When the proportional removal of the
species matches the birth rate, then the species goes extinct.

The equilibria for (5.15) are found by solving the quadratic, pe = f (pe, h), so

pe = 0 or pe = M − Mh
r .

For populations the second equilibrium must be non-negative, so h < r . As before,
when h = 0, there is the unstable extinction equilibrium, pe = 0, and the stable
carrying capacity equilibrium, pe = M . The right graph in Fig. 5.9 shows the lin-
ear decline of the stable carrying capacity with h, while the extinction equilibrium
remains unstable until hc = r . Here a bifurcation occurs and subsequently extinc-
tion, pe = 0, becomes the stable equilibrium. This bifurcation is called a transcrit-
ical bifurcation. Note that ∂ f

∂ p (p, h) = 1 + r − h − 2rp
M , so ∂ f

∂ p (0, r) = 1. Thus, this

example satisfies the bifurcation conditions that f (0, r) = 0 and ∂ f
∂ p (0, r) = 1.

Transcritical bifurcations are another generic codimension-one bifurcation in dis-
crete systems. The following theorem provides the conditions for the existence and
stability of a transcritical bifurcation.

Theorem 5.4 (Transcritical Bifurcation) Let f : R × R → R and let

f (xe,λc) = xe and
∂ f
∂ p (xe,λc) = 1, (bifurcation conditions)

A = ∂ f

∂λ
= 0, D = ∂2 f

∂x2
�= 0, and E =

(
∂2 f

∂x∂λ

)2

− ∂2 f

∂x2
∂2 f

∂λ2
�= 0,

where all derivatives are evaluated at the bifurcation point, (xe,λc). Then there are
two curves of fixed points in a neighborhood of (xe,λc), which intersect transversely
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at (xe,λc). If D < 0 then the upper branch is stable and the lower one is unstable.
If D > 0 then the stability properties are reversed.

The proof of this theorem are found in [15]. We apply this theorem to the logistic
growth model with proportional harvesting (5.15), where the bifurcation conditions
were shown above at (pe, hc) = (0, r). Computing the quantities A, D, and E at the
bifurcation point gives:

A = ∂ f
∂h = −p, so A = 0,

D = ∂2 f
∂ p2 = − 2r

M , so D < 0,

E =
(

∂2 f
∂h∂ p

)2 − ∂2 f
∂ p2

∂2 f
∂h2 = (−1)2 + ( 2rM · 0) , so E = 1.

These quantities satisfy the hypotheses of Theorem 5.4, showing that this model
does have a transcritical bifurcation at (pe, hc) = (0, r). Furthermore, with D < 0,
Theorem 5.4 implies the upper branch of equilibria is stable, while the lower branch
is unstable as shown in Fig. 5.9.

Example 5.5 Consider the logistic growth model

xn+1 = λxn(1 − xn).

We know from previous chapters that this model has two fixed points xe1 = 0
and xe2 = 1 − 1

λ
. At λ = 1, xe2 = 0, so that the two branches meet. Then the

condition f ′
λc

(xe) = 1 is satisfied when (xe,λc) = (0, 1). Direct calculations at
(xe,λc) = (0, 1) yield

A = x(1 − x) = 0, D = −2, E = 1 − 2x = 1.

Hence, by Theorem 5.4, a transcritical bifurcation occurs at (xe,λc) = (0, 1).
Furthermore, since D < 0 then the upper branch xe2 = 1 − 1

λ
is stable while the

lower branch xe1 = 0 is unstable.

5.4.4 Pitchfork Bifurcation

J.J. Hopfield [16, 17] proposed a connection between Ising models and networks of
neurons, which can be modeled using a mean-field theory approach. The approach is
similar to the one used earlier on in Chap. 4 for modeling a fluxgate magnetometer.
In fact, it leads to a very similar model for a neuron, even though the two systems
are completely different–a common occurrence in mathematical modeling. What
Hopfield suggested was that neurons could be modeled as a lattice of N binary
“spins”, Si , i = 1, . . . , N , in which each spin can be in one of two states: “spin up”
or Si = +1 and “spin down” or Si = −1. The average state of the neuron, ui , at spin
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Si , is found by adding the average contributions from all neighboring spins Sj and
from any external input, uext , through

〈ui 〉 =
∑
j→i

Ji j 〈Sj 〉 + uext , (5.16)

where Ji j is the coupling strength of the influence of spin Sj on spin Si . The average
state of the neuron, ui , can, in turn, induce a response on spin Si , to switch back
and forth between its two states +1 and −1. The actual switching mechanism can
be modeled by an activation function:

〈Si 〉 = tanh(ω〈ui 〉). (5.17)

where the parameter ω is related to the temperature T through ω = 1/(kBT ), with
kB being Boltzmann’s constant. Substituting Eq. (5.16) into Eq. (5.17), leads to an
average neuron response given by

〈Si 〉 = tanh(ω
∑
j→i

Ji j 〈Sj 〉 + ωuext ). (5.18)

Our interest is in the regime in which the neurons acquire an uniform polarization,
so that 〈Si 〉 = 〈S〉. Assuming identical coupling strengths Ji j = 1/N , where N is
the number of spins, we find a single equation for the average polarization of the
neurons

〈S〉 = tanh(ω〈S〉 + ωuext ). (5.19)

An extension of this last equation with discrete updating of the average polariza-
tion state leads to the following simple model [16–18] of N neurons.

xn+1 = tanh (ωxn + u) = f (x), (5.20)

where x ∈ R is the state variable that represents the polarization of the neurons,
u is an external input or applied stimulus, ω is a self-feedback parameter, which
is assumed to be constant. This model is often used as a basic unit to forming
larger neural networks, also known as Hopfield networks or recurrent neural network
(RNN), for AI (Artificial Intelligence). We wish to highlight that the RNN model
Eq. (5.20) is, essentially, the same as themodel that governs the response of a fluxgate
magnetometer, see Eq. (4.73). This is the result of both systems being governed by
similar underlying principles, in spite of neurons and fluxgate magnetometers being
unrelated to one another.

The model Eq. (5.20) actually represents a codimension-two problem since it
involves two independent parameters,ω andu. In this example,we consider, however,
the special case of no external stimulus, so that u = 0, which renders the problem
codimension-one. The feedback-parameter, ω, is then treated as the main bifurcation
parameter.
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Fig. 5.10 (Left) simulations of the RNN model (5.20) for various values of ω. For the range
0 < ω < 1, the solution of the model settles into lack of activity, represented by the stable trivial
fixed point. For values of ω in the range ω > 1, the solution settles into a nontrivial steady state.
(Right) bifurcation diagram illustrating the changes in fixed points as the feedback parameter ω
varies. The fixed points along the solid line are stable states, while those on the dashed line are
unstable

Figure 5.10 (left) shows simulations of the RNN model for various values of
the parameter ω. The simulations show that for small values of ω, in the interval
0 < ω < 1, the neuron has no activity, so it settles into the trivial fixed point x = 0.
But for values in the range ω > 1, the zero fixed point loses stability and two new
branches of non trivial fixed points emerge.

The fixed points of the RNN model are found by solving the equation

tanh(ωx) = x,

which leads to

xe1 = 0, xe2,3 = ±
√

ω − 1

ω
.

Observe that the trivial fixed points exist for all values of the parameter ω, while
the last two fixed points, xe2,3 , exist only when ω > 1. These last two fixed points
mergewith the trivial fixed point, xe1 , whenω = 1. Furthermore, the plots in Fig. 5.10
suggest that the fixed points, xe2,3 , are always stable whenever they exist, while the
trivial fixed point changes from stable to unstable as ω changes fromω < 1 toω > 1.
This type of transition, in which two new stable fixed points appear on one side of the
parameter range, while a third fixed point exchanges stability, is known as pitchfork
bifurcation.

Direct calculations show that

∂ f

∂x
= ω

(
1 − tanh (ωx)

)
.

Then, ∂ f
∂ω

(xe1) = ω
(
1 − ω−1

ω

) = 1. It follows that this example satisfies the bifur-

cation condition f (0,ω = 1) = 0 and ∂ f
∂x (0,ω = 1) = 1.
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The following theorem lists the conditions and provides details for calculating the
direction of the pitchfork bifurcation.

Theorem 5.5 (Pitchfork Bifurcation)
Let fλ : R → R and let

fλc(xe) = xe, f ′
λc

(xe) = 1 (bifurcation condition)

A = ∂ f

∂λ
= D = ∂2 f

∂x2
= 0, E = ∂2 f

∂x∂λ
�= 0, F = ∂3 f

∂x3
�= 0,

where all derivatives are evaluated at the bifurcation point (λc, xe) = (0, 0). Then
there is a branch of fixed points which passes through (xe,λc) transverse to λ = 0.
These fixed points are unstable in λ < 0 and stable in λ > 0 if E < 0, with stabilities
reversed if E > 0. A second branch of fixed points bifurcates from (xe,λc) tangential
to λ = 0 into λ > 0 if E F < 0 or into λ < 0 if E F > 0. This second branch of fixed
points is stable if it exists in λ < 0 and E < 0 or in λ > 0 and E > 0 (a supercritical
bifurcation). Otherwise it is unstable (a subcritical bifurcation).

Theproof of this theorem is found in [15].Weapply this theorem to theRNNmodel
Eq. (5.20), where the bifurcation conditions were shown above at (xe1 ,ωc) = (0, 1).
Computing the quantities A, D, E , and F gives:

A = ∂ f

∂ω
= x

(
1 − tanh2 (ωx)

)

D = ∂2 f

∂x2
= ∓2

√
ω−1
ω

E = ∂2 f

∂x∂ω
= 1 − tanh2 (ωx) − 2ωx tanh (ωx)

(
1 − tanh2 (ωx)

)

F = ∂3 f

∂x3
= −2ω ± 4ω(ω − 1)

Evaluating these derivatives at the critical bifurcation point (xe1 ,ωc) = (0, 1) we
get

A = 0, D = 0, E = 1 − 2x2 = 1, F = −2.

These quantities satisfy the hypotheses of Theorem 5.5, showing that this model
does exhibit a pitchfork bifurcation at (xe1 ,ωc) = (0, 1). Furthermore, since E > 0
the branch of fixed points xe2,3 is stable in ω > ωc = 1. Since E > 0 and F < 0,
Theorem 5.5 implies that the second branch of fixed points xe2,3 is stable in ω >

ωc = 1. Thus, the bifurcation is supercritical, as is shown in Fig. 5.10 (right).

Example 5.6 Consider the cubic map

xn+1 = λxn − x3n .

This model has two fixed points:
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Fig. 5.11 (Left) simulations of the quadratic model (5.21) for various values of c. (Right) Bifur-
cation diagram as a function of the varying parameter c. Across the range −3/4 < c < 1/4 all
solution trajectories converge to a nontrivial fixed point. When c is closer to c = −3/4 solutions
tend to oscillate

xe1 = 0, xe2 = ±√
λ − 1.

At λ = 1, xe2 = 0, so that the two branches meet. Then the condition f ′
λc

(xe) = 1
is satisfied when (xe,λc) = (0, 1). Direct calculations at (xe,λc) = (0, 1) yield

A = x = 0, D = −6x = 0, E = 1, F = −6.

Hence, by Theorem 5.5, a pitchfork bifurcation occurs at (xe,λc) = (0, 1). Further-
more, since E > 0 the branch of zero fixed points xe1 = 0 is stable in λ < λc = 1
and unstable in λ > λc = 1. E > 0 also implies that the second branch of fixed
points xe2 = ±√

λ − 1 is stable in λ > λc = 1. Thus the pitchfork bifurcation is
supercritical.

5.4.5 Period Doubling Bifurcation

The quadratic map

xn+1 = x2n + c, (5.21)

where c is a real-valued constant, has been used in the analysis of systems of semi-
conductor lasers [19], as it represents a phenomenological model of a chaotic system
that can be synchronized through coupling.

Figure 5.11 (left) shows simulations of the quadratic model for various values
of the parameter c. The simulations reveal that if −3/4 < c < 1/4 then solution
trajectories approach a nontrivial fixed point. For values of c closer to c = −3/4 the
solutions start to oscillate.
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Let us examine the model in more detail. Equilibrium points are found by solving

x2 + c = x,

which yields two solutions

xe1,2 = 1

2
± 1

2

√
1 − 4c.

Observe that these solutions exist only when c ≤ 1/4. To study their stability, we
compute the derivative of f (x) = x2 + c, which satisfies f ′(x) = 2x . For the first
equilibrium point, xe1 = 1

2 + 1
2

√
1 − 4c, to be stable, it must satisfy

| f ′(xe1)| < 1, or − 1 <
1

2
+ 1

2

√
1 − 4c < 1,

but this inequality has no solution. Thus, xe1 is always unstable. For the second
equilibrium point, xe2 = 1

2 − 1
2

√
1 − 4c, to be stable, we get

| f ′(xe2)| < 1, or − 1 <
1

2
− 1

2

√
1 − 4c < 1,

which is satisfied when c is in the interval

−3

4
< c <

1

4
.

A bifurcation occurs when | f ′(xe1,2)| = 1. That is,

|1 ± √
1 − 4c| = 1,

which is satisfied when c = 1/4 or when c = −3/4. This result suggests that two
transitions occur. One at c = 1/4 and one at c = −3/4. Indeed, the first transition,
at c = 1/4, corresponds to a saddle-node bifurcation and its analysis is left as an
exercise.

The second transition is associated with the onset of period-2 oscillations. Period-
2 points are found by solving

f 2(x) = (x2 + c)2 + c = x .

Expanding we get

(x2 − x + c)(x2 + x + 1 + c) = 0.

The first quadratic polynomial yields the equilibrium points. The second quadratic
function leads to the period-2 points, mainly
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x1,2 = 1

2
± 1

2

√−3 − 4c.

Observe that period-2 points exist only when c < −3/4. Figure 5.11 (right) is a
bifurcation diagram for the quadratic map. The diagram helps visualize the sequence
of changes in solution types as the bifurcation parameter c varies.

We now show that the second bifurcation at c = −3/4 corresponds to a period-
doubling bifurcation.

The following theorem lists the conditions and provides details for calculating the
direction of the pitchfork bifurcation.

Theorem 5.6 (Period-Doubling Bifurcation) Let fλ : R → R and let

fλc(xe) = xe, f ′
λc

(xe) = −1 (bifurcation condition)

A = 2
∂2 f

∂λ∂x
+ ∂ f

∂λ

∂2 f

∂x2
�= 0, D = 1

2

(
∂2 f

∂x2

)2

+ 1

3

∂3 f

∂x3
�= 0,

where all derivatives are evaluated at the bifurcation point (λc, xe) = (0, 0). Then a
curve of periodic points of period two bifurcates from (λc, xe) into λ > 0 if AD < 0
or λ < 0 if AD > 0. The fixed point from which these solutions bifurcate is stable
in λ > 0 and unstable in λ < 0 if A > 0, with the signs of λ reversed if A < 0. The
bifurcating cycle of period two is stable if it coexists with an unstable fixed point and
vice versa. The bifurcation is supercritical if the bifurcating solution of period two
stable and subcritical otherwise.

The proof of this theorem are found in [15]. We apply this theorem to the
quadratic Eq. (5.21), where the bifurcation conditionswere shown above at (xe2 , c) =
(xe2 ,−3/4). Computing the quantities A and D, gives:

A = 2
∂2 f

∂λ∂x
+ ∂ f

∂λ

∂2 f

∂x2
= 0 + 1 × 2 = 2, so A > 0,

D = 1

2

(
∂2 f

∂x2

)2

+ 1

3

∂3 f

∂x3
= 2x2 + 2

3
, so D > 0.

Since AD > 0 then the period-doubling branch bifurcates into c < −3/4. And
since A > 0 the branch of fixed points xe2 is stable when c > −3/4 and unstable
otherwise. Figure 5.11 (right) shows a bifurcation diagram of the solutions of the
quadratic model as a function of the parameter c. The diagram illustrates period-
doubling cascades starting from the nontrivial equilibrium point xe2 .

Example 5.7 Consider the logistic growth model

xn+1 = λxn(1 − xn).

We know from previous chapters that this model has two fixed points xe1 = 0 and
xe2 = 1 − 1

λ
. At λ = 3, xe2 = 2/3, and the bifurcation condition f ′

λc
(2/3) = −1 is
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Fig. 5.12 Period-doubling bifurcations in the logistic model xn+1 = r xn(1 − xn)

satisfied. Thus, we set (xe,λc) = (2/3, 3). Direct calculations at (xe,λc) = (2/3, 3)
yield

A = 2(1 − 2x) − 2λx(1 − x) = −2, D = 2λ2 − 2

3
= 52

3
.

Hence, by Theorem 5.6, a period doubling bifurcation occurs at (xe,λc) =
(2/3, 3). Furthermore, since AD < 0 then the period-doubling branch bifurcates
into λ > λc = 3. And since A < 0 the branch of fixed points xe2 = 1 − 1

λ
is stable

when λ < λc = 3 and unstable otherwise. Figure 5.12 shows a bifurcation diagram
of the solutions of the logistic model as a function of the parameter r . The diagram
illustrates period-doubling cascades starting from the nontrivial equilibrium point
xe2 .

Table 5.1 summarizes all the cases of codimension one bifurcations that we have
discussed so far. All derivatives are evaluated at the bifurcation points (xe,λc).

In addition, another nondegeneracy condition for the transcritical bifurcation
is f 2xλ − fxx fλλ �= 0 and for the period doubling: 2 fxx + fλ fxx �= 0 and 1

2 f
2
xx +

1
2 fxxx �= 0.

5.4.6 Neimark-Sacker Bifurcation

There is also an equivalentmechanism to that of theHopf bifurcation in discretemod-
els. It’s called the Neimark-Sacker bifurcation (NS). In a similar fashion to the Hopf
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Table 5.1 Classification of codimension one bifurcations in discrete models

Bifurcation ∂ f

∂x

∂ f

∂λ

∂2 f

∂x2
∂2 f

∂x∂λ

∂3 f

∂x3
Normal form

Saddle-
Node
(fold)

1 �= 0 �= 0 xn+1 = λ +
xn + x2n

Transcritical 1 0 �= 0 �= 0 xn+1 =
λxn − x2n

Pitchfork 1 0 0 �= 0 �= 0 xn+1 =
λxn − x3n

Period-
doubling

-1 �= 0 �= 0 xn+1 =
−(1 +
λ)xn + x3n

bifurcation, the NS bifurcation occurs when a pair of complex-valued eigenvalues,
σ1,2, cross the unit circle. This can be defined as |σ1,2| = 1 or σ1σ̄1 = 1, and σ1 ∈ C.
The bifurcation can also be either supercritical or subcritical. In the former case, a
stable focus loses its stability as a parameter is varied with the consequent emergence
of a stable cycle or quasi-cycle–typically known as closed invariant curves in the lit-
erature. In the latter case of a subcritical NS bifurcation, a stable focus enclosed by
an unstable closed curve loses its stability with the consequent disappearance of the
closed invariant curve as a parameter is varied.We discuss both cases next, following
closely the presentation in [20].

The normal form for a NS bifurcation problem takes the form
[
x1
x2

]
�→ (1 + λ)

[
cos θ − sin θ
sin θ cos θ

] [
x1
x2

]
+ (x21 + x22 )

[
cos θ − sin θ
sin θ cos θ

] [
d −b
b d

] [
x1
x2

]
(5.22)

where λ is the distinguished bifurcation parameter, θ = θ(λ), b = b(λ), d = d(λ),
d(0) �= 0, and 0 < θ(0) < π. Observe that (x1, x2) = (0, 0) is an equilibrium point
for all values of λ. The first term contains linear terms and the second one the
nonlinear part. Thus, the Jacobian matrix is

(d f ) = (1 + λ)

[
cos θ − sin θ
sin θ cos θ

]
,

whose eigenvalues are σ(λ) = (1 + λ)e±θi . Thus, at λ = 0, in particular, the zero
equilibrium is nonhyperbolic due to a complex-conjugate pair of eigenvalues on the
unit circle, i.e., |σ(0)| = 1.

We can rewrite the normal forms in complex coordinates by setting z = x1 + x2i
and d1 = d + bi , which yields

z �→ eθi z(1 + λ + d1|z|2).
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If we let μ = μ(λ) = (1 + λ)eθ(λ)i and c1 = c1(λ) = d1(λ)eθ(λ)i we arrive at the
complex version of the normal form

zn+1 = (μ + c1|zn|2)zn (5.23)

Theorem 5.7 (Kuznetsov [20])
Consider the complex version of the normal forms (5.23) for the Neimark-Sacker

bifurcation. Let d(0) = Re{e−θ0i c(0)} be the first Lyapunov coefficient. If d(0) �= 0
then

(a) If d(0) < 0, then the normal form has a fixed point at the origin, which is asymp-
totically stable for λ ≤ 0 (weakly at λ = 0) and unstable for λ > 0. Thus, the
bifurcation is classified as a supercritical Neimark-Sacker bifurcation. More-
over, there is a unique and stable closed invariant curve that exists for λ > 0
and has radius O(

√
λ).

(b) If d(0) > 0, then the normal form has a fixed point at the origin, which is asymp-
totically stable for λ < 0 and unstable for λ ≥ 0 (weakly at λ = 0). Thus, the
bifurcation is classified as a supercritical Neimark-Sacker bifurcation. More-
over, there is a unique and unstable closed invariant curve that exists for λ < 0
and has radius O(

√−λ).

We can also rewrite the normal form equations in polar coordinates by letting
zn = ρneϕn i , which (after some simplifications) yields

ρn+1 = ρn(1 + λ + d(λ)ρ2n) + . . . h.o.t
ϕn+1 = ϕn + θ(λ) + . . . h.o.t.

(5.24)

Observe that the amplitude equations for ρ decouple from the phase equations ϕ.
This decoupling facilitates the calculationoffixedpoints and their stability properties.
First of all, ρe1 = 0 is always a fixed point for all values of λ. If we let

f (ρ) = ρ(1 + λ + d(λ)ρ2),

then f ′(ρe1 = 0) = 1 + λ implies that ρe1 = 0 is stable if λ < 0 an unstable if λ > 0.
Additionally, for λ > 0 there is a nonzero fixed-point

ρe2 =
√

− λ

d(λ)
.

which corresponds to a periodic orbit of Eq. (5.23). Similarly, direct computations
show f ′(ρe2) = 1 − 2λ. Thus, ρe2 is stable whenever λ > 0. Under this scenario, the
NS bifurcation is classified as supercritical.

Figure 5.13 illustrates both the supercritical and subcritical Neimark-Sacker bifur-
cations.
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Fig. 5.13 (Top)
Supercritical and (bottom)
Subcritical Neimark-Sacker
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Example 5.8 Consider the following discrete model of the interaction between a
predator P and a prey N

Nt+1 = r Nte
−bPt

Pt+1 = Nt (1 − e−aPt ),
(5.25)

where a, b, r > 0. Thismodelmakes he simplifying assumption that the predator can
consume the prey without limit. In fact, the special case a = b can lead to unbounded
growth in solutions. We do not consider that case in here. Hone et al. [21] showed
that a nondimensionalized version of the model takes the form

xt+1 = r xt e
−yt

yt+1 = xt (1 − e−ayt ),
(5.26)

which reduces the total number of positive parameters from three to two, a and r .
Neither one of these remaining parameters can be removed by rescaling.

Since x and y represent the size of twopopulations, prey andpredator, respectively,
we will only consider solutions on the first quadrant of the phase space, where
x, y ≥ 0.On this quadrant, the onlyfixedpoints are: (xe1 , ye,1) = (0, 0) and (xe2 , ye2),
where

xe2 = ra log r

ra − 1
, ye2 = log r.

The Jacobian matrix of the linearized system around the (xe2 , ye2) fixed point is
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J =
[

1 −xe2
1 − r−a axe2r

−a

]
.

The characteristic polynomial for J is σ2 − tr(J )σ + det(J ) = 0, where

tr(J ) = 1 + log(1 + v)

v
, det(J ) =

(
1

a
+ 1

v

)
log(1 + v),

where v = ra − 1. Now, recall the condition for the NS bifurcation: σ1σ̄1 = 1 and
σ1 ∈ C. This is also equivalent to det(J ) = 1, which yields, in solving for a(v):

ac(v) =
(

1

log(1 + v)
− 1

v

)−1

.

Direct (and tedious) calculations show that alongac(v),Δ = tr2(J ) − det(J ) < 0,
so that the eigenvalues are indeed complex. Consequently, at a = ac(v) the nontrivial
fixed point (xe,2, ye,2) loses stability in a Neimark-Sacker bifurcation. An analysis
of the direction of bifurcation is deferred as an exercise. Figure 5.14 illustrates the
closed invariant curve that emerges via the NS bifurcation. The simulations were
performed in MATLAB, see Appendix.

0 0.5 1 1.5 2 2.5
xn

0

0.5

1

1.5

2

2.5

y n

Fig. 5.14 Representative orbit of the discrete model (5.26) showing the closed invariant curve that
emerges via a Neimark-Sacker bifurcation. Parameters are: a = 40 and r = 3. Initial condition:
(1.1, 1.1), number of iterates N = 40
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Fig. 5.15 Critical
eigenvalues associated with
codimension one
bifurcations in continuous
models
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5.5 Codimension One Bifurcations in Continuous Systems

In the case of continuous models, there are two critical values of the eigenvalues that
can lead to codimension one bifurcations, either λ = 0 or λ = 0 ± τ i . These two
cases are illustrated in Fig. 5.15.

These two critical values of the eigenvalues associated with codimension-one
bifurcations can lead to four common mechanisms for changes in behavior in con-
tinuous models when one single parameter is varied:

• Saddle node bifurcation
• Transcritical bifurcation
• Pitchfork bifurcation
• Hopf bifurcation

The first three involve changes between equilibrium points while the fourth one
involves the emergence of periodic oscillations. All four cases are the simplest cases
of bifurcations that one can encounter in a model because it requires that we only
change one parameter.

We introduced bifurcations in continuous models first because it turns out that
much of the analysis of the bifurcations in discrete systems, such as (5.12), can be
inferred from the analysis on continuous models by applying the theory discussed in
Sect. 5.5 on the system

g(x,λ) = f (x,λ) − x.

In this section we will discuss each one of the bifurcations scenarios described
above.Thepresentationwill bemotivatedby a corresponding example of amathemat-
ical model of a physical system. Each model will involve a distinguished parameter
λ that must be varied and a critical value λc where the bifurcation occurs. Without
loss of generality, we can assume λc = 0. Similarly, we can assume there is a non-
hyperbolic equilibrium at xe = 0. Together, (xe,λc) = (0, 0)will define the location
of the bifurcation.
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5.5.1 Saddle-Node Bifurcation

We now return to our running example, the fluxgate magnetometer, first introduced
in Chap. 4. Recall the mathematical model from Eq. (4.73):

τ
dx

dt
= −x + tanh(c(x + He(t) + Hx )).

In that model, we already encountered an instance of a saddle-node bifurcation as
two equilibria in the model appeared or disappeared as the parameter that defines the
applied external field, Hx , varies. That is, fromSect. 4.10we know that in the absence
of an external field, i.e., Hx = 0, there are three equilibrium points: xe = {−1, 0, 1}.
But as Hx increases, the negative equilibrium at xe = −1 and xe = 0 start to move
closer to one another until there is a critical value of Hx beyond which the two
equilibria collide and then disappear. The region where this occurs has been marked
with a circle in Fig. 4.46. The circle emphasizes the local nature of the bifurcation.
That is, the “out-of-the-blue” appearance and disappearance of equilibria occurs
locally around a critical value of Hx and it corresponds to a saddle-node bifurcation.
The critical value of Hx can be calculated by solving

tanh(c(x + He(t) + Hx )) = x

for Hx , to get:

Hx = −x + 1

c
tanh(x),

and then, numerically, finding the value of Hx where this last equation has a unique
real-valued solution for x . For c = 3, the numerical calculation yields, approximately,
Hx = 0.4348 and x = −0.8168. Then a Taylor series expansion around this point
yields (after some manipulation) an equation of the form

dx

dt
= λ + ax2 + higher order terms, (5.27)

where λ ∈ R is the distinguished bifurcation parameter and a is a real constant. In
fact, one can also show that a can be scaled to a = ±1. Without loss of generality,
we consider the case a = −1 and later we comment on the opposite case a = +1.

Now, one can verify that f (x,λ) = λ − x2 satisfies the bifurcation condi-
tion (5.11). To explore the nature of the bifurcation, we use Fig. 5.16 to visualize the
changes in the phase portraits of Eq. (5.27), as the main parameter, λ, is varied.

From left-to-right, when λ < 0 we can see that f (x,λ) < 0, so there are no equi-
libria. Furthermore, observe that ẋ < 0, which means that the flow always decreases
along the x-axis. At λ = 0, f (x, 0) = 0 only at one single point (0, 0), so there is
only one equilibrium point xe = 0. Once again, ẋ < 0, so the flow also decreases
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Fig. 5.16 Changes in phase portrait due to passage through a saddle-node bifurcation

along the x-axis. When λ > 0, there are two points of intersection for the graph of
f (x,λ), so that xe = ±√

λ.
In summary, all equilibrium points are defined by xe = ±√

λ, with λ ≥ 0. To
determine their stability properties, we compute the derivative of f :

∂ f

∂x
= −2x,

and then evaluate it at the two equilibrium points to get:

∂ f
∂x |x+ = −2

√
λ < 0, where x+(λ) = +√

λ
∂ f
∂x |x− = +2

√
λ > 0, where x−(λ) = −√

λ.

Consequently, we conclude that x+(λ) = +√
λ is locally asymptotically stable

while x−(λ) = −√
λ is unstable. These stability properties are marked with arrows

in Fig. 5.16. But perhaps the best way to summarize and visualize the results of the
stability analysis is with the aid of the bifurcation diagram of Fig. 5.17. The diagram
shows the state variable x as a function of λ. Solid curves represent branches of stable
equilibria, x = +√

λ in this case, while dashed lines represent unstable equilibria,
i.e., x = −√

λ. now, the case of a = −1 is similar except that the bifurcation occurs
to the left λ = 0. In a similar manner, one can show that, in that case, the equilibria
x = +√

λ is unstable while x = −√
λ is stable.

It is worthwhile pointing out that, among all codimension-one bifurcation prob-
lems, the saddle-node bifurcation is the generic bifurcation in the sense that this
is the type of bifurcation that one can expect when there are no additional restric-
tions imposed on the function f (x,λ) beyond its smoothness and the bifurcation
conditions (5.11). Roughly speaking, this means that the perturbed problem

dx

dt
= f (x,λ) + ε p(x,λ),
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Fig. 5.17 Saddle-node bifurcation diagram. Two new branches of equilibrium points emerge on
one side of the parameter λ, while on the other side there are no equilibrium points

where ε > 0 is sufficiently small, and p is the perturbation function, will also exhibit
a saddle-node bifurcation, provided that no additional constrains are imposed on f .

5.5.2 Transcritical Bifurcation

We now return to the laser beammodel discussed previously in Chap. 4. In the model
Eq. (4.18), we encountered a case of a transcritical bifurcation as two branches of
equilibria exchange stability properties. Recall that the laser beam model has the
following form

dx

dt
= λx + ax2, (5.28)

where, once again, λ ∈ R is the bifurcation parameter and a is a real constant that can
be scaled to a = ±1. Without loss of generality, we choose a = −1. Direct calcu-
lations show that f (x,λ) = λx − x2 also satisfies the bifurcation condition (5.11).
The changes in phase portraits, as λ is varied, are illustrated in Fig. 5.18.

Observe that this time f (x,λ) has two roots for all values of λ, i.e., xe = 0,
and a nonzero root, xe = λ. These roots are equilibrium points, which collide with
one another exactly at λ = 0. Both equilibrium points exchange their stability as λ
changes sign.
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Fig. 5.18 Transcritical bifurcation

To make this description more precise, we compute below the derivative of f , to
get:

∂ f

∂x
= λ − 2x .

To determine the stability properties of the equilibrium points, we evaluate the
derivative of f at each of them, to get:

∂ f

∂x
|x=0 = λ,

∂ f

∂x
|x=λ = −λ.

It follows that xe = 0 is stable whenever λ < 0 and unstable for λ > 0. On the
contrary, xe = λ is unstable whenever λ < 0 and unstable for λ > 0. At λ = 0 there
is only one equilibriumpoint xe = 0. Since ẋ = −x2 < 0 then any solution trajectory
with initial condition x0 decreases along he x-axis.

The bifurcation diagram of Fig. 5.19 summarizes the location and stability proper-
ties of both branches of equilibrium points. As in the previous case of a saddle-node
bifurcation, solid lines represent branches of stable equilibrium points while dashed
lines correspond to unstable equilibria. At λ = 0 we have a bifurcation point at
which two branches of equilibria exchange stability properties. This scenario, i.e.,
where two branches meet and exchange stability properties, is a distinctive feature
of a transcritical bifurcation. As indicated at the beginning of this section, the laser
beam model exhibits a transcritical bifurcation. The bifurcation occurs as the laser
dynamics transitions from a regular “lamp” to a synchronized laser emission.
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Fig. 5.19 Transcritical bifurcation diagram. Two branches of equilibrium points exchange stability
properties at the critical bifurcation point λ = 0

5.5.3 Pitchfork Bifurcation

We now consider the revised Euler beam’s model Eq. (5.8), which we rewrite to
facilitate the description of the analysis:

dx

dt
= λ x + ax3, (5.29)

where, once again, λ ∈ R is the bifurcation parameter and a is a real constant that can
be scaled to a = ±1. Without loss of generality, we choose a = −1. Recall that this
equation serves as a phenomenological model for the buckling experiment in which
an elastic beam is subjected to a compressive force. As usual, we start the analysis
by verifying that f (x,λ) = λ x − x3 satisfies the bifurcation conditions (5.11). The
changes in the phase portraits are illustrated in Fig. 5.20.

For λ ≤ 0, the graph of f (x,λ) suggests that there is only one equilibrium point
xe = 0. Since ẋ < 0 then xe = 0 appears to be locally stable. For λ > 0 two new
equilibria have appeared, one positive and one negative. As expected, these two new
equilibria correspond to each of the two buckled states. Again, visual inspection
suggests the nonzero equilibria to be locally stable but the zero one is now unstable.
Next we verify this assertion more precisely. We compute the derivative of f :

∂ f

∂x
= λ − 3x2,
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Fig. 5.20 Pitchfork bifurcation

and then evaluate it at the three equilibrium points to get:

∂ f
∂x |x=0 = λ,
∂ f
∂x |x=±√

λ = −2λ.

Consequently, xe = 0 is stable whenever λ < 0 and unstable otherwise. The two
new equilibria xe = ±√

λ only exist when λ > 0 and they are always stable. Notice
that when λ = 0, ẋ = −x3, so if an initial condition satisfies x0 > 0 then ẋ < 0
and the associated solution trajectory would decrease towards the zero equilibrium.
Similarly, if x0 < 0 then ẋ < 0 and the associated solution trajectory would increase
towards the zero equilibrium.

What does this all mean for the experiment of the buckle beam?

From the experiment standpoint, when the beam buckles due to the compressive
force the buckled states are always stable, so we can observe them. Which one of the
two states would be observed in an actual experiment depends mainly on the actual
conditions of the experiment, i.e., material imperfections of the beam and exact
location of the force. Figure 5.21 summarizes the results of the analysis through the
corresponding bifurcation diagram.

5.5.4 Nondegeneracy Conditions

In addition to the bifurcation conditions (5.11), it is also possible to determine non-
degeneracy conditions, which can be used to specify the direction of the bifurcation.
These conditions can be derived, for instance, by developing an asymptotic expan-
sion for the locus of equilibrium points in the (x,λ) plane [22] or by consideration
of the geometry of the graph of equilibrium points in the (x,λ) plane as well. Here,
we choose the latter approach and apply it to the saddle-node bifurcation problem,
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Fig. 5.21 Pitchfork bifurcation diagram. Two stable branches of equilibrium points appear at the
critical bifurcation pointλ = 0.At the same point, a trivial branch of equilibrium exchanges stability
properties

though a similar process can be applied to the transcritical and pitchfork bifurcations.
The calculations follow closely the process used by Wiggins in [6].

Consider again the bifurcation conditions (5.11) and the saddle-node bifurcation
problem ẋ = λ − x2, which arose within the context of the mathematical model of
a fluxgate magnetometer. According to the bifurcation diagram of Fig. 5.17, there
are two branches of equilibria x = ±√

λ that lie locally on one side of λ = 0. If we
interpret these two branches of solutions as a unique curve of equilibria of the form
λ(x), which is parameterized by x as it passes tangent to the bifurcation point (0, 0),
then the Implicit Function Theorem applies to f with the roles of x and λ reversed,
that is

∂ f

∂λ
(0, 0) �= 0. (5.30)

Furthermore, the fact that λ(x) lies locally on one side of λ = 0 is the same as
saying that λ(x) is either concave up or down as a function of x . That is, no inflection
points. Together, these two conditions become

dλ

dx
(0) = 0 (5.31a)

d2λ

dx2
(0) �= 0. (5.31b)

Now, Eq. (5.30) implies that we can write the solutions to f = 0 as:

f (x,λ(x)) = 0.
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Differentiating with respect to x yields

d f

dx
(x,λ(x)) = 0 = ∂ f

∂x
(x,λ(x)) + ∂ f

∂λ
(x,λ(x))

dλ

dx
(x). (5.32)

Evaluating this last equation at the bifurcation point (0, 0) we get

dλ

dx
(0) =

−∂ f

∂x
(0, 0)

∂ f

∂λ
(0, 0)

.

Observe that the denominator of this last equation cannot be zero due to Eq. (5.30).
The numerator is, however, exactly zero due to the second equation in the bifurcation
conditions (5.11). It then follows that

dλ

dx
(0) = 0.

This last result was expected because it just confirms what we already knew, i.e.,
that the curve of equilibria λ(x) is tangent to the line λ = 0 at x = 0.

Differentiating once again Eq. (5.32) with respect to x yields

d2 f

dx2
(x,λ(x)) = 0 = ∂ f 2

∂x2
(x,λ(x)) + 2

∂2 f

∂x∂λ
(x,λ(x))

dλ

dx
(x)+

2
∂2 f

∂λ2
(x,λ(x))

(
dλ

dx
(x)

)2

+ ∂ f

∂λ
(x,λ(x))

d2λ

dx2
(x).

Evaluating this last equation at the bifurcation point (0, 0) we get

d2λ

dx2
(0) =

−∂2 f

∂x2
(0, 0)

∂ f

∂λ
(0, 0)

.

Again, the denominator of this last equation cannot be zero due to Eq. (5.30). The
numerator cannot be zero either due to the concavity condition Eq. (5.31b).

In summary, in addition to the bifurcation conditions (5.11) we have also found
two nondegenerate conditions

∂ f

∂λ
(0, 0) �= 0

∂2 f

∂x2
(0, 0) �= 0.
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Table 5.2 Classification of codimension one bifurcations in continuous models

Bifurcation ∂ f

∂λ

∂2 f

∂x2
∂2 f

∂x∂λ

∂3 f

∂x3
Normal form

Saddle-Node
(fold)

�= 0 �= 0 ẋ = λ ± x2

Transcritical 0 �= 0 �= 0 ẋ = λx ± x2

Pitchfork 0 0 �= 0 �= 0 ẋ =
(x2 ± λ)x

These two conditions are listed in Table 5.2. Derivatives are evaluated at the
bifurcation point, which can be assumed to be at (xe,λc) = (0, 0). A similar process
can be applied to find out the nondegenerate conditions for transcritical and pitchfork
bifurcation.

5.5.5 Hopf Bifurcation

All of the bifurcation examples we have studied so far have involved transitions
between stationary or equilibrium points. These transitions occur at a codimension
one bifurcation when a real-valued eigenvalue passes through zero. But it is also
possible to have codimension one transitions when a complex-valued eigenvalues
crosses the imaginary axis at nonzero speed. This type of transition is known as a
Hopf bifurcation and it involves equilibrium points and oscillatory behavior. As a
case study, we consider the Brusselatormodel Eq. (5.9). To investigate the emergence
of periodic solutions, we compute the Jacobian matrix

J =
[
2XY − (1 + β) X2

−2XY + β −X2

]
.

Evaluating at the equilibrium point (Xe,Ye) = (α,β/α) we get

J
∣∣
(Xe,Ye) =

[
β − 1 α2

−β −α2

]
.

The characteristic polynomial can be written explicitly as

σ2 − (β − α2 − 1)σ + α2 = 0.

Recall that when Tr(J ) < 0 and Δ = Tr2(J ) − 4det(J ) < 0 the equilibrium is a
spiral sink. This is exactly what happens in the phase portrait of Fig. 5.5 (left). But
when Tr(J ) > 0, while Δ > 0, the equilibrium changes to an unstable spiral source,
while a limit cycle oscillation emerges. This case corresponds to Fig. 5.5 (right).
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Fig. 5.22 Supercritical Hopf
bifurcation
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Thus, the condition for a Hopf bifurcation to occur is

Tr(J ) = 0, and det(J ) > 0.

Since det (J ) = α2 > 0 is always satisfied then the Hopf bifurcation in the Brus-
selator model occurs along the curve β = α2 + 1. This is a one dimensional curve
inside a two-parameter space. In other words, a codimension 2 − 1 = 1 bifurcation.
The bifurcation is classified as supercritical Hopf bifurcation because the equilib-
rium looses stability while the limit cycle becomes stable. The opposite scenario,
in which a stable equilibrium gives way to an unstable limit cycle, is classified as a
subcritical Hopf bifurcation. These two scenarios are illustrated in Figs. 5.22 and
5.23. The solid closed curve that appears, at λ = 0, for the supercritical bifurcation
corresponds to stable periodic oscillations. The dashed closed curve that emerges in
the subcritical case represents unstable periodic solutions.

The following theorem tells us how to detect the Hopf bifurcation in a general
system and how to classify it in terms of supercritical or subcritical.

Theorem 5.8 (Hopf Bifurcation) Consider the following planar system of ODEs

ẋ = f (x, y,λ)

ẏ = g(x, y,λ)
(5.33)

where λ is a distinguished bifurcation parameter. Without loss of generality, assume
Eq. (5.33) has an equilibrium at (0, 0). Let F = ( f, g) and assume the Jacobian
matrix, (dF)(0,0), evaluated at the (0, 0) equilibrium to have eigenvalues of the form
σ(λ) = α(λ) ± β(λ). Suppose also that at a critical value λc (which can also be
assumed to be zero) the following conditions are satisfied:



5.5 Codimension One Bifurcations in Continuous Systems 217

Fig. 5.23 Subcritical Hopf
bifurcation
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(i) α(0) = 0, β(0) = ω �= 0, where sgn ! = sgn
@g

@x

∣∣∣∣
˘=0

(0, 0)

(ii)
dα(λ)

dλ

∣∣∣∣
λ=0

= d �= 0

(iii) a �= 0, where

a = 1

16
( fxxx + fxyy + gxxy + gyyy)+

1

16ω

[
fxy( fxx + fyy) − gxy(gxx + gyy) − fxxgxx + fyygyy

]

all derivatives are evaluated at λc = 0 and at the equilibrium point (0, 0).

Then a unique curve of periodic solutions bifurcate from the origin into the region
λ > 0 if ad < 0 or λ < 0 if ad > 0. The origin is a stable fixed point for λ > 0
(resp. λ < 0) and an unstable fixed point for λ < 0 (resp. λ > 0) if d < 0 (resp.
d > 0) while the periodic solutions are stable (resp. unstable) if the origin is unstable
(resp. stable) on the side of λ = 0 where the periodic solutions exist. Alternatively,
periodic solutions are stable when a < 0 and unstable when a > 0. The amplitude
of the periodic orbits grows like

√
λ while their periods tend to 2π/|ω| as |λ| tends

to zero.

Condition (i i) is known as the transversality condition. Geometrically, it means
that the eigenvalues cross the imaginary axis with nonzero speed. Condition (i i i) is
known as the genericity condition.

Example 5.9 We continue now the analysis of the Brusselator model. We start by
shifting the origin to the (0, 0) through the substitution x = X − α and y = Y − β/α.
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After this shift of coordinates the Brusselator Eq. (5.9) become

dx

dt
= (β − 1)x + α2y + β

α
x2 + x2y + 2αxy

dy

dt
= −βx − α2y − β

α
x2 − x2y − 2αxy.

(5.34)

At the Hopf bifurcation condition β = α2 + 1, the eigenvalues of the jacobian
matrix J

∣∣
(Xe,Ye) are σ = ±αi . The corresponding eigenvector is:

V =
[

α2i
α + (−β + 1)i

]

Wenow transform the systemofODEs from X = (x, y) coordinates toU = (u, v)

coordinates using the linear transformation X = PU , where the columns of the P
matrix are the real and imaginary components of the eigenvectors associated with
the eigenvalue σ = ±αi , explicitly:

P =
[
0 α2

α −β + 1

]
.

Under this transformation into Eq. (5.34) becomes:

[
u̇
v̇

]
=
[
0 −α
α 0

]
+
[

(−3 + 3β + α2β − 3α)v2

(2 − β)αv2 + α3uv2 + (1 − β)α2v3 + 2α2uv

]
(5.35)

Let

f (u, v) = −αv + (−3 + 3β + α2β − 3α)v2,

g(u, v) = αu + (2 − β)αv2 + α3uv2 + (1 − β)α2v3 + 2α2uv.

Direct computations of the partial derivatives of f and g yields the following
nonzero derivatives:

fuv = 1, fvv = 2(−3 + 3β + α2β − 3α2), gvvv = 6(1 − β)α2, guv = 2α2,

all other derivatives that are required to apply the Hopf theorem are zero. Direct
substitution yields:

a = −α2(2 + α2)

8
< 0.

Consequently, we conclude that the Hopf bifurcation that yields periodic oscilla-
tions in the Brusselator model is supercritical.
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Example 5.10 Adimensionless version of theColpitts oscillator thatwas introduced
earlier on Chap. 4 has the following form:

dx1
dt

= g

Q(1 − κ)

[− (e−x2 − 1
)+ x3

]

dx2
dt

= g

Qκ
x3

dx3
dt

= −Qκ(1 − κ)

g
(x1 + x2) − 1

Q
x3,

(5.36)

where Q represents the quality factor of the resonant network, see Fig. 4.50, while
g is related to the gain in the circuit.

In this example we show that a Hopf bifurcation at g = 1 leads to the oscillatory
behavior shown in Fig. 5.24.

The oscillations emerge from the trivial equilibrium (0, 0, 0). Thus, linearizing at
this equilibrium point leads to the Jacobian matrix

0 20 40 60 80 100
-5

0

5

x 1

0 20 40 60 80 100
-2

0

2

x 2

0 20 40 60 80 100

Time

-0.5

0

0.5

x 3

Fig. 5.24 Time series solution of the dimensionless Colpitts oscillator model illustrate periodic
oscillations. These oscillations emerge via a Hopf bifurcation. Parameters are: g = 1.1, Q = 1, and
κ = 0.5
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J(0,0,0) =

⎡
⎢⎢⎢⎢⎣

0
g

Q (1 − k)

g

Q (1 − k)
0 0

g

Qk

−Qk (1 − k)

g
−Qk (1 − k)

g
− 1

Q

⎤
⎥⎥⎥⎥⎦

.

Then the characteristic polynomial det (J − λI ) yields the following cubic poly-
nomial in λ

λ3 + 1

Q
λ2 + λ + g

Q
= 0. (5.37)

At g = 1, the eigenvalues are:

λ1 = − 1

Q
, λ1,2 = 0 ± i.

We cannot yet classify or even identify the bifurcation as a Hopf bifurcation
without calculating the nondegenerate conditions indicated in Theorem 5.8. To do
those calculations we first find an approximate analytical solution to the eigenvalues
of the Jacobian matrix near the point g = 1. We set

g = 1 + ε,

where ε is a small perturbation, i.e., ε  1. Equivalently, ε = g − 1. We start by
setting

λ1 = − 1

Q
+ a1ε,

where a1 is an undetermined coefficient. Substituting λ1 into Eq. (5.37) yields

(
− 1

Q
+ a1ε

)3

+ 1

Q

(
− 1

Q
+ a1ε

)2

+
(

− 1

Q
+ a1ε

)
+ 1

Q
(1 + ε) = 0.

Collecting like powers of ε we get

a1 = − Q

Q2 + 1
.

Thus, to a first-order approximation, the first eigenvalue is

λ1 = − 1

Q
− Q

Q2 + 1
(g − 1) = − 1 + gQ2

Q
(
Q2 + 1

) .

We now perform a similar set of calculations with the remaining two eigenvalues.
Since they are complex conjugate, it makes sense to set
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λ2,3 = 0 ± i + a2ε.

Substituting λ2,3 into Eq. (5.37) now yields

(i + a2ε)
3 + 1

Q
(i + a2ε)

2 + (i + a2ε) + 1

Q
(1 + ε) = 0.

Collecting like powers of ε we get

a2 = Q

2
(
Q2 + 1

) + 1

2
(
Q2 + 1

)
i
.

Thus, to a first-order approximation, the remaining two eigenvalue can be written
as

λ2,3 = Q

2
(
Q2 + 1

) (g − 1) ±
[
1 + 1

2
(
Q2 + 1

) (g − 1)

]
i.

Wecannowproceed to classify the bifurcation.Observefirst thatλ1 < 0.This sug-
gests that solutions converge to the eigenspace spannedby the eigenvectors associated
with λ2,3. Now, if we let μ = g − 1 then the bifurcation point g = 1 corresponds to
μ = 0. From the expression above for λ2,3 we see that σ(μ) = α(μ) ± β(μ), where

α(μ) = �(λ2,3) = Q

2
(
Q2 + 1

)μ, β(μ) = �(λ2,3) = 1 + 1

2
(
Q2 + 1

)μ.

Then we can immediately verify the first set of nondegenerate conditions, α(0) =
0 and β(0) = ω = 1. The second condition can be written as

dα(μ)

dμ

∣∣∣∣
μ=0

= d = Q

2
(
Q2 + 1

) > 0, ∀Q > 0.

The third nondegenerate condition yields

a = − 1

16

Q5

(1 + 4Q2)(1 + Q2)2
< 0.

It follows from Theorem 5.8 that a supercritical Hopf bifurcation in the Colpitts
oscillator model (5.36) occurs at g = 1. Figure 5.25 shows a numerical computation
of a two-parameter bifurcation diagram.

Example 5.11 We consider again the FitzHugh-Nagumomodel of neuron excitabil-
ity. For completeness purposes, we re-write the model as
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Fig. 5.25 Two-parameter bifurcation diagram of a simplified model of a Colpitts oscillator. The
locus of a Hopf bifurcation that leads to limit cycle oscillation is located at g = 1, for all values of
Q. For values of Q < 0 a subcritical Hopf bifurcation at g = 1 produces unstable limit cycles. The
physically relevant case, Q > 0, yields a supercritical Hopf bifurcation at g = 1, which produces
stable limit cycles. Dashed lines represent unstable equilibrium points; solid lines represent stable
equilibria; open circles denote unstable limit cycles; closed circles represent stable limit cycles. The
stable limit cycles become more sinusoidal as g is chosen near the Hopf point. This can be seen in
the subfigures, which show the time evolution of the oscillations

dx

dt
= x − x3

3
− y + I

dy

dt
= 1

c
(x + a − by).

(5.38)

Recall that x represents the membrane potential of the neuron. Since y describes
slow currents, we make the assumption here that c � 1. In Chap. 4 we showed that
if the parameter b lies in the interval 0 < b < 1 then the model Eq. (5.38) admits
one unique equilibrium point.

Let’s assume (xe, ye) to represent this equilibrium point. The Jacobian evaluated
at this equilibrium point is

J
∣∣
(xe,ye) =

[
1 − x2 −1

1

c
−b

c

]
.
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We know the condition for a Hopf bifurcation is

Tr(J ) = 0, and det(J ) > 0.

These conditions are satisfied when

(1 − x2e ) − b

c
= 0, −b

c
(1 − x2e ) + 1

c
> 0,

which implies

x2e = 1 − b

c
, x2e > 1 − 1

b
.

Since 0 < b < 1, the inequality above is always satisfied. It follows that the Hopf
bifurcation occurs along the curve

xHB = ±
√
1 − b

c
. (5.39)

Equation (5.39) represents the loci of the Hopf bifurcation parameterized by the
constants b and c. Observe that for very large values of c, the term b/c vanishes. In
this limit case, the loci reduce to x1,2 = ±1, which correspond to the maximum and
minimum values of the cubic nullcline y = x − x3/3. In fact, the assumption c � 1
implies that b/c < 1, so that the Hopf bifurcation condition is always satisfied.

We now attempt to find a lower bound on a for the Hopf bifurcation to occur. To
do this, we consider again (see Chap. 4) the location of the equilibrium point, which
along the x-axis it should satisfy

x3 + px + q = 0, (5.40)

where

p = −3(b − 1)

b
, q = 3a

b
− 3I.

The stable equilibrium point, xe(a, b), should exist when xe(a, b) < xHB . Solving
Eq. (5.40) for a and equating with Eq. (5.39), yields the desired expression for the
lower bound on a. Assuming the limit case b/c  1, the expression for the bound
becomes

a > −2

3
b + 1. (5.41)

5.6 Global Bifurcations

The previous section examined generic local bifurcations, which relied on the vari-
ation of a single parameter changing the qualitative behavior near an equilibrium.
However, mathematical models can change behavior in phase space on a much larger
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Fig. 5.26 The left phase portrait shows a saddle point at the origin with its unstable manifold
approaching a limit cycle. The middle phase portrait shows the unstable manifold connecting to the
stable manifold, a homoclinic orbit at some critical parameter value. As the parameter varies more,
the right phase portrait shows the limit cycle disappearing

scale, and these global bifurcations result in qualitative behavior changes in the topol-
ogy of the solution trajectories, which are not confined to a local neighborhood. There
are a number of these types of bifurcations; however, this section only discusses a
few types and gives a model from diabetes for one type of global bifurcation.

Global bifurcations occur for flows from a model when small changes in a param-
eter result in one invariant set changing into a topologically different invariant set,
which is not restricted to a small neighborhood in phase space. One example of
this is a homoclinic bifurcation, where a saddle point and a limit cycle collide as a
parameter varies. Figure 5.26 shows a homoclinic bifurcation, where as a parameter
varies, a limit cycle collides with a saddle point. At a critical parameter value, the
unstable manifold of the saddle node connects with its stable manifold, creating a
homoclinic orbit. For smaller values of the parameter, the phase portrait on the left
exists with a stable periodic orbit having the unstable manifold of the saddle node
converging to the limit cycle. For larger parameter values, the phase portrait on the
right shows the loss of the periodic orbit.

A heteroclinic bifurcation occurs when a limit cycle collides with two or more
saddle points. The classic example of this type of bifurcation is seen in the phase
portraits of a pendulum as seen in Fig. 5.27. The governing ODE model for the
pendulum is given by:

θ̈ + δθ̇ + g

l
sin(θ) = 0, (5.42)

where g is gravity, l is the length of the pendulum, δ is viscous damping, and θ is the
angular displacement. There are infinitely many saddle nodes when the pendulum is
vertically up with the unstable manifolds of these equilibria connecting to the stable
manifolds of a neighboring vertically up equilibria for the undamped pendulum
(δ = 0). These heteroclinic orbits surround the periodic solutions of the undamped
pendulum.When damping (δ > 0) is included, this neutrally stable behavior changes
to the attracting equilibria where the pendulum is attracted to one of its resting
positions (down).
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Fig. 5.27 This figure shows phase portraits for the pendulum equation (5.42), exhibiting a hete-
roclinic bifurcation. The phase portrait on the left is the undamped pendulum, while the one on the
right includes damping

One can easily see how these situations become complex and cause a variety
of different behaviors. In three or more dimensions, the stable and unstable mani-
folds can become tangled and can result in what are called chaotic attractors. This
results in the interesting behavior of models that demonstrate chaos, which is very
unpredictable behavior.

5.7 The Role of Symmetry

Symmetry is a geometrical concept that describes the set of transformations that
leave an object unchanged. In models of systems with either discrete or continuous
behavior, the objects are the governing equations, which typically consist of systems
of difference equations, ordinary differential equations (ODEs) or partial differential
equations, and the transformations are the changes in the underlying variables that
leave the equations unchanged.

From a modeling standpoint, symmetry has been recognized for a long time as
being an important principle underlying the behavior of many physical systems.
Regardless of the type of equations, the set of transformations that leave a model
unchanged forman abstractgroup. In this sense,we can say that symmetry is encoded
in mathematical models through group theory. Thus, we need to define formally the
concept of a group.

Definition 5.4 A group is a set G with an associative operation G × G → G, i.e.,
(ab)c = a(bc), ∀a, b, c ∈ G, such that the identity e ∈ G exists, i.e., eg = ge = g,
∀g ∈ G. Inverses g−1 ∈ G also exist ∀g ∈ G, such that gg−1 = e = g−1g.

Example 5.12 (The symmetry group of a pentagon) The symmetries of the pentagon
of Fig. 5.28 are described by the dihedral group D5 of order 10:

D5 = {e, ρ, ρ2, ρ3, ρ4,κ,κρ,κρ2,κρ3,κρ4},
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Fig. 5.28 Symmetries of a
pentagon are described by
the dihedral D5 group

where ρ represents a rotation by 2π/5 and κ is a reflection across the line that runs
between any of the vertices and the middle point of the opposite line. It can be shown
that all symmetries of the pentagon result from the combination of rotations and
reflections. Thus, we say the groupD5 is generated by ρ and κ and writeD5 = {ρ,κ}.

In fact, if all the elements of a group can be written as the product of a smaller
subset then those elements in the subset are called the generators of the group, and
the group itself is said to be generated by the subset.

Example 5.13 (The symmetry group of a directed ring) The symmetries of an uni-
directionally connected ring with N elements, see Fig. 5.29, are described by the
group ZN of order N , which describes cyclic permutations of N objects {1, . . . , N }.
The elements of the groups can be written as

ZN = {e, ρ, ρ2, . . . , ρn1},

where ρ = 2π/N . In this case, all elements of the group are generated by a single
element ρ, so we can write ZN = {ρ}.

The order of any group element γ is the minimum integer n such that γn . Observe
in our previous example thatρN = e, soρhas order N . However, consider for instance
the case N = 4, so that Z4 = {e, ρ, ρ2, ρ3}, where ρ = 2π/4. Notice that (ρ2)2 = e.
Thus ρ2 has order 2 (Fig. 5.29).

In the example above, we defined the generator ρ of the group Zn as a counter-
clockwise rotation around the ring. Without loss of generality, the same results can
be obtained if the rotation is defined clockwise. That is, the groups ZN = {ρ} and
ZN = {−ρ} are isomorphic groups.

Example 5.14 (The general linear group GL(n)) The set of all n × n real and
invertible matrices form the general linear group GL(n). This set is a group under
matrix multiplication. Observe that the product of any two invertible n × n matrices
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Fig. 5.29 Symmetries of an
unidirectionally connected
ring with N elements

is an associative operation, which yields an invertible n × n matrix, so the group is
closed under multiplication. There exists an identity element, i.e., the identity matrix
In ,which is also invertible. Finally, everymatrix inGL(n) is invertible.Consequently,
the set GL(n) forms a group.

Definition 5.5 Two groups Γ and Δ are isomorphic, written as Γ1
∼= Δ if there

exists a bijective (one-to-one and onto) map h : Γ → Δ, such that

h(γ1γ2) = h(γ1)h(γ2) ∈ Δ, ∀γ1, γ2 ∈ Γ.

Example 5.15 As another example, consider the dihedral group D3 of symmetries
of a triangle and the group S3 of all permutations of 3 objects. These two groups are
isomorphic to one another, so D3

∼= S3.

Later on, we will describe the set of transformations that leave a mathematical
model unchanged through Lie groups. By a Lie group we mean a closed subgroup
ofGL(n), so the general linear group will be a very important group for a modeling
standpoint. But first, we finish this section with on more example of a group.

Example 5.16 (The symmetry group of a ring pattern) Consider a ring pattern as
is shown in Fig. 5.30. The ring remains unchanged under continuations rotations by
an arbitrary angle θ and by reflections (represented by κ) across the plane dissecting
through the middle of the ring. These two operations, rotations and reflections on the
plane generate the continuous groupO(2) of symmetries of a ring, i.e.,O(2) = {θ,κ}.

It turns out that, in many cases, one can use the underlying group of symmetries of
a physical system to derive mathematical models and, more importantly, predict the
behavior of the system without the need for computer simulations or experimental
work. This approachworkswell even if the systemdoes not exhibit exact symmetries.
But, first, we need to formalize what we mean by symmetries of a model and how
groups are used to describe the symmetries of the corresponding model equations.
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Fig. 5.30 Symmetries of a
ring pattern. Blue curve
corresponds to arbitrary
rotations. Red curve
represents reflections

5.7.1 Continuous Models with Symmetry

We now start to formalize the ideas of how symmetry can be incorporated into a
modeling approach. First, we define what it means for a model to be symmetric.
Then, we study in more detail how symmetry might affect the solution sets of a
mathematical model.

Definition 5.6 Consider, for instance, a system with continuous behavior, modeled
through the following system of ODEs

dx

dt
= f (x,λ), (5.43)

where x ∈ R
n , λ ∈ R

p is a vector of parameters and f : Rn × R
p → R is a smooth

function. Let Γ be a compact Lie group acting on V = R
n . The mathematical

model (5.43) is said to have Γ -symmetry if

f (γx,λ) = γ f (x,λ), (5.44)

for all x ∈ R
n and for all γ ∈ Γ . By a Lie group we mean a closed subgroup of

GL(n), the group of all invertible linear transformations of the vector space Rn into
itself. That is, Γ is a matrix group. By compact we mean matrices with bounded
entries.

Certain groups of symmetries arise more frequently in mathematical models.
Examples include: Dn , the dihedral group of order 2n, which describes rotation and
reflection symmetries of an n-gon; Zn , the cyclic group of order n, which describes
rotational symmetries of an n-gon; Sn , the group of all possible permutations of n
objects;O(n), the orthogonal group of n × n matrices A that satisfy AAT = I; S(n),
the special orthogonal group which also satisfies det(A) = 1; S1, the circle group;
and the n-torus Tn = S1 × . . . × S1︸ ︷︷ ︸

n times

.

In the next section and chapter wewill discuss various examples that involve these
groups.
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Whenever Eq. (5.44) is satisfied, the function f is said to be Γ -equivariant.
More importantly, Γ -equivariance implies that if x(t) is a solution of (5.43) then so
is γx(t) for all γ ∈ Γ . To verify this claim, we substitute γx(t) in Eq. (5.43)

d{γx(t)}
dt

= f (γx(t),λ),

and since γ is simply a constant transformation we get

γ
dx

dt
= γ f (x(t),λ),

where the right-hand is obtained through the Γ -equivariant property of f . This
shows that γx(t) satisfies the ODE (5.43). And it also shows that the entire model is
Γ -symmetric.

In fact, the collection of points γx(t), for all γ ∈ Γ , forms a set called the group
orbit of Γ :

Γ x = {γ x : γ ∈ Γ }.

Furthermore, the concept of group orbit applies to any point x(t), not just equi-
librium solutions.

Example 5.17 As an example, consider the van der Pol circuit depicted in Fig. 5.31.
IL and IC are the currents across the inductor L and capacitor C , respectively. IR is
the current across two resistors R1 and R2 located inside the rectangle labeled R in
which F(V ) = −V/R1 + V 3/(3R2

2).
The dynamics of the circuit shown in Fig. 5.31, after rescaling, is governed by the

following second order scalar ODE

Fig. 5.31 Circuit realization
of a Van der Pol oscillator.
The governing equations
exhibit reflectional
symmetry with respect to the
state variables
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d2V

dt2
− δ(p − V 2)

dV

dt
− ω2V = 0, (5.45)

where δ = 1/(R2C), p = R2/R1, ω = 1/
√
LC . After a change of variables, we can

rewrite the model equation (5.45) as a first order system of the form

dx

dt
= δ

(
px − x3

3

)
+ ωy

dy

dt
= −ωx,

(5.46)

where x(t) = V (t). We can then find two transformations that leave this system
unchanged: the identity transformation γ1 = id, where γ1(x, y) �→ (x, y), and a
second transformation, which can be described abstractly as γ2 = −1, so that
γ2(x, y) �→ (−x,−y). The identity transformation is always a symmetry of any
system, while the second transformation γ2 corresponds to a reflection through the
origin in the phase space R

2. Furthermore, it can be shown that γ1 and γ2 are the
only transformations that leave (5.46) unchanged. Together, γ1 and γ2 form the group
Z2 = {γ1, γ2} of symmetries of the Van der Pol oscillator (5.46).

5.7.2 Isotropy Subgroups

In addition to the symmetries of a model, individual solutions can also exhibit sym-
metry. For instance, consider equilibrium solutions xe of Eq. (5.43), whichwe already
know satisfy

f (xe) = 0.

The symmetries of equilibrium points of a Γ -equivariant ODE form a subgroup
of Γ , which we define next.

Definition 5.7 Let xe represent an equilibrium or steady-state solution of a Γ -
equivariant system of ODEs. The symmetries of xe form the isotropy subgroup
Σ of Γ , which is defined by

Σxe = {γ ∈ Γ : γ · xe = xe} . (5.47)

Example 5.18 Let’s revisit the original Euler beam’s model (5.7) and the reduced
version (5.8), which we rewrite for the purpose of this section:

E Iθ
′′
(x) + P sin θ(x) = 0, original model

dx

dt
= λ x − x3, reduced order model.
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Recall that x is the material coordinate, θ(t) is the deflection angle between the
undeformed rod and the tangent of the deformed rod, E is the elastic modulus, I is
moment of inertia, P is the compressive force and L is the length of the beam. Both
models possess reflectional symmetry: θ �→ −θ in the original model or x �→ −x in
the reduced model. And in both cases the symmetry is described by the group Z2,
which we write in abstract form as Γ = Z2 = {1,−1}. Notice that this is the same
group of symmetries of the Van der Pol model, except that now the group acts on θ
or x instead of (x, y). Nevertheless, in abstract form it is exactly the same group.

In Sect. 5.1 we indicated that the Lyapunov Schmidt Reduction procedure was
used to derive the reduced order model. We now show that this can also be accom-
plished on the grounds of the Z2–symmetry alone. Consider the schematic diagram
in Fig. 5.32 of the experimental apparatus that was introduced earlier on through
Fig. 5.3.

We are looking for a mathematical model in the form of a system of ODEs

dx

dt
= f (x,λ), (5.48)

for the evolution of the material coordinate x(t) as a function of time. We know
equilibria of the model are solutions of f (x,λ) = 0. By Z2–symmetry, we know
from Fig. 5.32 that if x is a solution so is −x , that is:

f (x,λ) = 0,
Symmetry=⇒ f (−x,λ) = 0.

To be consistent with the schematic diagram, we can also assume that f is an odd
function in x , i.e., f (−x,λ) = − f (x,λ), which implies that f (0,λ) = 0, so that
x = 0 is indeed an equilibrium (the unbuckled state). Since f is odd, we can write

f (x,λ) = b(x,λ)x

Fig. 5.32 Schematic
diagram of Euler Beam’s
experiment
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where b is even in x , i.e., b(−x,λ) = b(x,λ). Let b(x,λ) = a(x2,λ). Then a Taylor
expansion of f yields

f (x,λ) = a(x2,λ)x
Taylor= (

a(0, 0) + ax2(0, 0)x
2 + aλ(0, 0)λ + . . .

)
x

Observe that the first of the two bifurcation conditions (5.11), i.e, f (0, 0) = 0,
is already satisfied by f . The second condition, fx (0, 0) = 0 implies a(0, 0) = 0.
Thus, the Taylor expansion for f takes the form

f (x,λ) = (αx2 + βλ + . . .
)
x,

where α = ax2(0, 0) and β = aλ(0, 0). Substituting into Eq. (5.48) we get

dx

dt
= βλx + αx3.

Re-scaling time by τ = βt and setting γ = α/β yields the reduced order model

dx

dτ
= λx + γx3. (5.49)

As expected, Eq. (5.49) remains unchanged under the change of coordinates x �→
−x . The model equation is said to exhibit reflectional symmetry, which is a direct
consequence of the experimental set up.Now, the unperturbed unbuckled state (θ = 0
or x = 0) is the trivial solution with Γ -symmetry. Assuming boundary conditions
θ(0) = θ(L) = 0, two nontrivial solutions of the original model are ± sin(πx/L)

and for the reduced order model we already know two nontrivial solutions ±√
λ. In

both cases, the isotropy subgroup of these nontrivial solutions is the trivial group 1.

The underlying mechanism that leads to the emergence of the buckled states in
the Beam models is known as spontaneous symmetry-breaking bifurcation. The
fundamental principle is that changes in a model parameters induce the physical
system to transition into a new state of less symmetry, encapsulated by the isotropy
subgroupΣ . Of course, in the Beammodel this means that the system transitions into
a statewith no symmetry sinceΣ is the trivial subgroup. It is still the simplest example
of an spontaneous Z2 symmetric-breaking bifurcation, which serves to illustrate
the main ideas. Interestingly, most problems involve transitions into states (either
stationary or dynamic ones) where the isotropy subgroup is other than the trivial
subgroup. This transition is formally defined as symmetry breaking and we present
next the main ideas in more detail.
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5.8 Symmetry-Breaking Bifurcations

Equivariant systems of ODEs always posses a trivial solution x0 whose isotropy
subgroup is the entire group of symmetries of the model equations [23–25]. That
is, Σx0 = Γ . But as parameters are varied the system can exhibit a new solution
with less symmetry. That is, Σx ⊂ Γ . When this happens, it is then said that the
system has undergone a spontaneous symmetry-breaking bifurcation. We consider
in this chapter two types of symmetry-breaking bifurcations, steady-state and Hopf
bifurcations. The former case leads to new equilibrium solutions while the latter to
periodic oscillations. We describe next each of these two cases.

5.8.1 Steady-State Bifurcations

To illustrate the concept of spontaneous-symmetry breaking bifurcations to steady-
states, we employ two examples, which, from a scientific point of view, e.g., physics
and chemistry, they appear to be completely unrelated. One deals with the formation
of a crown-like structure over a glass filledwithmilk. The other, is about the formation
of cellular flame patterns over a burner. From a geometric standpoint, these two
systems or experiments have a lot more in common, however. Let’s take a look in
more detail and find out what happens in each experiment when their underlying
circular symmetry is broken.

Example 5.19 (Milk Drop Coronet) The iconic picture in Fig. 5.33 of the milk drop
coronet was captured with the aid of the pioneering work on speed photography
by Harold E. Edgerton. The picture illustrates best the phenomenon of steady-state
symmetry-breaking bifurcation.

The pool of milk in its unperturbed or trivial state is symmetric under arbitrary
rotations and reflections on a plane, which form the orthogonal group O(2). The
perturbation by the droplet breaks, however, theO(2) symmetry of the trivial solution
and it induces a crown-like shape with lesser symmetry. The 24-sided polygon that
appears by joining the individual clumps now has D24-symmetry, where DN is the
dihedral group of symmetries of an N -gon.

Example 5.20 (Premixed Flame Dynamics) A mixture of either isobutane and air,
or propane and air, are burned on a circular porous plug burner in a low pressure (0.3
to 0.5 atm) combustion chamber, see Fig. 5.34 (left). The process allowed for control
of the pressure, flow rate, and fuel to oxidizer ratio to within 0.1%. The simplest
cellular pattern generated by the burner is a large single cell withO(2) symmetry, as
is shown in Fig. 5.34 (top-right).

Changes in the experimental parameters (type of fuel, pressure, total flow, and
equivalence ratio) lead to spontaneousO(2) symmetry-breaking bifurcations and, as
a result, stationary states with less symmetry appear. In this case, a stationary pattern
with D6 symmetry is shown in the bottom part of the figure.
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Fig. 5.33 This iconic picture of the milk drop illustrates the phenomenon of symmetry-breaking
bifurcations. An unperturbed pool of milk is invariant under arbitrary rotations and reflections on
a plane, which form the orthogonal group O(2). The crown-like shape that emerges under the
perturbation by the droplet is a 24-sided polygon whose symmetryes are described by the dihedral
group D24. Source: Harold E. Edgerton, Milk Drop Coronet, 1957. 2010 Massachusetts Institute of
Technology

Fig. 5.34 Combustion experiments conducted by M. Gorman, et al., at the University of Hous-
ton [26] showcase cellular flame pattern instability. (Left) Experimental apparatus. (Top-right)
Simplest pattern that appears is a homogeneous flame front with the sameO(2) symmetry as that of
the circular burner. (Bottom-right) spontaneous symmetry-bifurcations lead to a stationary cellular
flame pattern with D6–symmetry
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At first glance, the two experiments are completely unrelated. But, as we said
before, they have a lot more in common. They are both experiments carried out
on a system that has circular symmetry. Thus, it is not surprising that two distinct
experiments produce the same type of stationary patterns, one with d24 symmetry
and the other with D6 symmetry because both types of patterns belong to the same
class of Dn symmetric solutions that emerge when O(2) symmetry is broken. It is
in this context that we refer to the two problems and their solutions as beingmodel-
independent.

5.8.2 Equivariant Branching Lemma

We have discussed so far symmetries of objects through abstract groups. They are
called abstract because on their own the group elements do not transform an object,
they only serve to describe the geometry of the object. Thus, to each group element
we need to associate the corresponding transformations that will act on the actual
objects, i.e., model equations. This is done through a critical concept known as the
representation of a group.

Let Γ be a Lie group and V a vector space. A representation of a finite group Γ

is a homomorphism from Γ to the group of general linear matrices GL(V ). That is,

ρ : Γ → GL(V ).

Thus, a group element γ ∈ Γ describes the abstract structure of the group, while
ρ(γ) = A ∈ GL(V ) indicates how each group element acts, through thematrix A, on
the objects. The dimension of the representation is dim(V ), so it is common practice
to refer to V as “the representation of γ”.

Example 5.21 (The Dihedral Group D3 of a Triangle) Consider for instance a ring
structure with three elements, as is shown below in Fig. 5.35. The symmetries of
this triangular ring are described by the dihedral group D3 = {e, ρ, ρ2,κ,κρ,κρ2},
where ρ = 2π/3 and κ is the reflection across the vertical dashed line shown in the
figure.

The natural representation of the group is a 2D representation given by six
matrices {Ae, Aρ, Aρ2 , Aκ, Aκρ, Aκρ2}, one for each group element, where

Ae =
[
1 0
0 1

]
, Aρ =

[
− 1

2 −
√
3
2√

3
2 − 1

2

]
, Aρ2 =

[
− 1

2

√
3
2

−
√
3
2 − 1

2

]
,

Aκ =
[−1 0

0 1

]
, Aκρ =

[
1
2

√
3
2√

3
2 − 1

2

]
, Aκρ2 =

[
1
2 −

√
3
2

−
√
3
2 − 1

2

]
.

It is called the natural representation because it is directly associated with the
“natural” geometry of the triangle, so it can be visualized almost immediately. There
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Fig. 5.35 Symmetries of a
triangle ring are described by
the dihedral D3 group

Fig. 5.36 One-dimensional
complex representation of
D3

are, however, other representations associated with D3. For instance, there is a one-
dimensional complex representation where e, ρ and ρ2 act as the identity, while κ,
κρ and κρ2 act as z �→ −z, where z ∈ C. We can try to visualize this representation
with the aid of Fig. 5.36.

We can see that the rotations ρ and ρ2 map white/gray subtriangles onto them-
selves, so they act as the identity. Adding a reflection by κ to any of the rotations
has the same effect as flipping the lines across the origin. This is the same as mul-
tiplying by −1 any point in z ∈ C. Thus, z �→ −z. This representation is called the
alternating representation.

Finally, there is one more representation, the identity or trivial representation in
which ρ(γ) = 1, for every γ ∈ Γ . Every group admits the trivial representation. In
our example, we can now think of the “triangular region” as the entire plane, so that
any combination of rotations and reflections act as the identity element. In Sect. 8.8
of Chap. 8 we illustrate in more detail the use of these irreducible representations to
predict the formation of certain spatial patterns.

It is worthwhile mentioning that there are rigorous techniques for determining
the number and type of irreducible representations of a finite group. The techniques
belong to an area of mathematics known as representation theory. The scope of
that work is beyond the scope of this book, so we refer interested readers to various
references [8].

Since every linear Lie group Γ is a group of matrices in GL(n) then it can be
shown that every Lie group Γ also admits the natural action on R

n , which is given
by matrix multiplication. Now, among all representations of a group, including the
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natural one, there are two types of representations that are particularly important from
the symmetry-breaking bifurcation point of view. One type are called irreducible
representations. To define them, we need the concept of Γ -invariance.

A subspace W ⊂ V is said to be Γ -invariant if

ρ(γ)w ∈ W, for all w ∈ Wand γ ∈ Γ.

Definition 5.8 A representation or action of Γ on a vector subspace V is said to be
irreducible if the only Γ -invariant subspaces of V are {0} and V itself.

Example 5.22 (The special orthogonal group SO(2)) This group is a subgroup of
the orthogonal groupO(n). It consists of 2 × 2 matrices A that satisfy AAT = 1 and,
in addition, det(A) = 1. The standard action of SO(2) on R

2 is defined by rotation
by an angle θ. That is,

Rθ =
[
cos θ − sin θ
sin θ cos θ

]
.

Since the only subspaces of R2 that remain invariant under arbitrary rotations are
the origin and the entire plane then this action is irreducible.

Absolute irreducibility is yet another concept that is used systematically to deter-
mine the generic type of bifurcations that can occur in a symmetric system of ODEs.
For instance, absolute irreducibility excludes the existence of purely imaginary eigen-
values in the linearization of a model. Consequently, periodic oscillations cannot
emerge via Hopf bifurcations for absolutely irreducible spaces. A brief definition
follows but more details can be found in [8, 25].

Definition 5.9 A representation of a group Γ on a vector space V is absolutely
irreducible if the only linearmappings onV that commutewithΓ are scalarmultiples
of the identity.

Example 5.23 (The Dihedral Group D3 of a Triangle) All three representations
(trivial, alternating and natural) of the dihedral group D3 are absolutely irreducible.

Example 5.24 (The special orthogonal group SO(2)) We just showed above that
this group is irreducible.However, it is not absolutely irreducible. To seewhy, observe
that the composition of any two arbitrary rotations matrices Rθ and Rα commute.
That is,

Rθ+α = RθRα = RαRθ = Rα+θ.

Example 5.25 (The orthogonal group O(2)) This group is made up of arbitrary
rotations on the plane and reflections. In its standard action or representation, it con-
tains SO(2) as a subgroup with the rotation matrix Rθ and a subgroup of reflections
given by the matrices

Mκ =
[
1 0
0 −1

]
.
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Since we know that SO(2) is irreducible then it follows that the standard repre-
sentation of O(2) is also irreducible. Notice that this is the case even though R is an
invariant subspace for the reflection Mκ because it is not invariant under SO(2). In
other words, reducibility requires invariance under all group elements.

Now, we must determine if the standard representation is also absolutely irre-
ducible. To do this, we need to determine which matrices commute with Rθ and
which ones with Mκ. Thus, let A be an arbitrary matrix

A =
[
a b
c d

]
.

Direct calculations show that

MκA =
[

a b
−c −d

]
, AMκ =

[
a −b
c −d

]
.

Thus, MκA = AMκ implies b = c = 0. In addition, commutativity with Rθ

requires

RθA =
[
a cos θ −d sin θ
a sin θ d cos θ

]
, ARθ =

[
a cos θ −a sin θ
d sin θ d cos θ

]
.

Then, RθA = ARθ requires a = d. Consequently, A is a multiple of the identity
and it follows that the standard representation of O(2) is absolutely irreducible.

It is also awell-known fact that symmetry forces systemsofODEs to have invariant
linear subspaces. In particular, the fixed-point subspace of a solution is the invariant
subspace where the isotropy subgroup acts trivially.

Definition 5.10 Suppose that Σ ⊂ Γ is a subgroup. Then the fixed-point subspace
is the vector subspace of Rn where the subgroup Σ acts trivially. Formally:

Fix(Σ) = {x ∈ R
n : σx = x ∀σ ∈ Σ

}

Claim The fixed-point subspace is a flow invariant subspace [25].

Proof Consider a mathematical model in the form of a continuous system of Γ -
equivariant ODEs

dx
dt

= f (x,λ).

Let σ ∈ Σ and x ∈ Fix(Σ). Then

f (x) = f (σx) = σ f (x).

The first equality follows from the fact that that x ∈ Fix(Σ), while the second
one arises from the Γ -equivariance of f . �
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Fixed point subspaces describe the regions of phase space where a particular
solution resides. This suggests a model-independent strategy to find solutions of
symmetric systems of ODEs. Restrict the equations to Fix(Σ) and then solve for the
solutions. Since Fix(Σ) is, in general, lower dimensional that the entire space then it
might be significantly easier to solve the restricted equations. A critical observation
is the fact that it might be possible, under certain conditions, to predict the type of
solutions of a symmetric system of ODEs without having to solve for the solutions.
Details are formalized by the Equivariant Branching Lemma (EBL).

Theorem 5.9 (Equivariant Branching Lemma [25]) Let Γ ⊆ O(n) be a compact
Lie group acting absolutely irreducibly on Rn. Let

dx

dt
= f (x,λ), x ∈ R

n, λ ∈ R (5.50)

be a Γ -equivariant bifurcation problem so that

f (0,λ) = 0
(d f )0,λ = c(λ)I.

Assume c′(0) �= 0 and let Σ ⊆ Γ satisfy

dim Fix(Σ) = 1.

Then there exists a unique branch of solutions to f (x,λ) = 0 bifurcating from (0, 0),
where the symmetry of the solution is Σ .

Example 5.26 Consider again the Euler beam experiment. Recall that the symme-
tries of the experiment are described by the group Γ = Z2. Furthermore, Σ = 1 is
an isotropy subgroup in which Fix(Σ) = R, so that dim Fix(Σ) = 1. Thus, by the
Equivariant Branching Lemma, we can predict the existence of a branch of steady-
state solutions with Σ = 1 symmetry in the idealized model

ẋ = λx − x3.

This reduced problem satisfies all conditions of the Equivariant Branching
Lemma. The steady-state solutions with trivial symmetry are ±√

x . They emerge
via a pitchfork bifurcation.

Example 5.27 (Cylindrical Euler Beam) If the Euler beam were to be cylindrical
instead of rectilinear then the group of symmetries of the experiment would become
Γ = O(2), the orthogonal group of rotations and reflections on the plane. Without
loss of generality, assume the rotations by an arbitrary angle θ is equivalent to shifting
α �→ α + θ. Similar results can be obtained if the shift is defined in the opposite
direction, i.e., α �→ α − θ. We can also assume the reflections to be across the x
axis, though similar results are obtained if the reflection were to be defined across
the y axis.
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To see how the O(2) group acts on the plane, let R2 ∼= C and consider a typical
point z = reαi ∈ C. First we look at the rotations. Substituting the shift,α �→ α + θ,
in z yields:

re(α+θ)i = eθi reαi = eθi z.

Thus, we have shown that θ ∈ Γ acts on C as

θ · z = eθi z.

Similarly, a reflection across the x-axis byκ is equivalent toα �→ −α. Substituting
in z we get

re−αi = reαi = z̄.

This shows that κ ∈ Γ acts on C as

κ · z = z̄.

Combining the actions of θ and κ, we conclude that Γ = O(2) acts on C as
follows:

θ · z = eθi z
κ · z = z̄.

These result are illustrated in Fig. 5.37.

Fig. 5.37 The action of the orthogonal group O(2) on the plane
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Fig. 5.38 Buckling of a
cylindrical beam

Now, the critical observation. The group Σ = Z2(κ) = {1,κ} is a subgroup of
O(2), which consists of only the reflections on the plane, without rotations. Recall
the definition of the fixed point subspace of a subgroup Σ : the vector subspace (of
R

2 in this example) in which the subgroup Σ acts trivially. In our example, the only
vector subspace where reflections across the x-axis are trivial is precisely the x-axis.
Mathematically, this means that

Fix(Σ) = R.

Since dim(R) = 1 then dim Fix(Σ) = 1, and, thus, by the Equivariant Branch-
ing Lemma, an O(2) steady-state bifurcation problem can lead to equilibria with
reflectional symmetry. From the modeling standpoint, this means that in an Euler
Beam experiment with a cylindrical beam, generically, there will be buckle modes
with reflectional symmetry in addition to the buckled state with trivial symmetry.
The possible transitions or bifurcations are illustrated in Fig. 5.38. On the left, the
figure shows the unperturbed state of the beam. On the right, the symmetry-breaking
breaking bifurcations as they are observed through the lattice of isotropy subgroups.

We have discussed so far bifurcations that lead to new branches of equilibrium
points. However, it is also possible, under certain conditions, for periodic solutions
to emerge through Hopf symmetry-breaking bifurcations. Next we discuss those
conditions and introduce a revised version of the Equivariant Branching Lemma for
periodic solutions.
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5.8.3 Hopf Bifurcation with Symmetry

Symmetries of periodic solutions may arise in one of two forms. As purely spatial
symmetries or as a combination of space and time symmetries. To get insight, let

dx

dt
= f (x,λ), x ∈ R

n,λ ∈ R
p (5.51)

be a system of differential equations with Γ -symmetry. Let x(t) be a T -periodic
solution, so that

x(t + T ) = x(t).

We know from Sect. 5.7.1 that Γ -equivariance of f (x) implies that if x(t) is a
solution of Eq. (5.51) so is γx(t) for all γ ∈ Γ . The two trajectories, x(t) and γx(t)
may either have nothing in common. That is

γ{x(t)} ∩ {x(t)} = ∅,

as is shown in Fig. 5.39 (left), Or, if the two solutions were to intersect at any point
t , say t = 0, then the intersection point must the be the same initial point for both
solutions. Then by uniqueness of solutions the trajectories must be identical. That is

γ{x(t)} ∩ {x(t)} = {x(t)}.

Now, let’s assume the two periodic solutions are indeed symmetrically related so
that the trajectories are identical. This can happen in two ways, via purely spatial
symmetries or through a combination of spatial and temporal symmetries. In the
former case, a periodic solution x(t) is fixed at every moment in time by some
γ ∈ Γ , so that γ is a purely spatial symmetry. Formally, we can define the group of
purely spatial symmetries as

K = {γ ∈ Γ : γx(t) = x(t)} (5.52)

Fig. 5.39 Symmetry of periodic solutions. (Left) γx(t) and the original solution x(t) are disjoint,
so they are not symmetrically related. (Right) γx(t) and x(t) intersect at a common point x(0), so
by uniqueness of solutions the two trajectories must be the same
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Notice that K is defined in amanner that resembles the symmetries of steady-states
discussed above.

In the latter case, spatio-temporal symmetries, the solution trajectory is fixed by
a combination of the spatial action of γ ∈ Γ and a phase-shift θ ∈ S1, where S1 is
the circle group of phase shifts acting on 2π periodic functions. That is,

(γ, θ) · x(t) = γx(t + θ) = x(t), ∀t.

As it was the case of steady-state solutions, both types of symmetries can be
formally described through an extended version of the isotropy subgroup for periodic
oscillations.

Definition 5.11 Let x(t) represent a periodic solution of a Γ -equivariant system of
ODEs. The symmetries of x(t) form the isotropy subgroup, which is defined by

Σx(t) = {(γ, θ) ∈ Γ × S1 : γx(t + θ) = x(t)
}
. (5.53)

Observe that the case θ = 0 corresponds to purely spatial symmetries, captured
by the subgroup K ⊂ Σx . But we can also identify one more subgroup of Σx ,

H = {γ ∈ Γ : γ{x(t)} = {x(t)}}. (5.54)

In this case, the subgroup H describes all the symmetries that preserve the trajec-
tory of x(t) without attention to the temporal shift, i.e, H is the subgroup of spatial
components of the spatio-temporal symmetries of x(t).

In the next chapter we will make extensive use of these two subgroups H and K
when we describe the symmetries of networks of coupled cell systems.

Generically, the existence of Hopf bifurcations in a symmetric system of ODEs
is determined by Γ -simple irreducible representations. Formally,

Definition 5.12 A representation W of Γ is Γ -simple if either W is composed of
two copies of an absolutely irreducible representation, so that W = V ⊕ V , or W is
non-absolutely irreducible for Γ .

In either of these two cases, it can be shown [8, 25] that Γ -simple representations
lead to Jacobian matrices with the following structure

(d f )(0,0) =
[
0 −Im
Im 0

]
, (5.55)

where m = n/2.

We can now state the equivalent of the Equivariant Branching Lemma for Hopf
bifurcations with symmetry.
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Theorem 5.10 (Equivariant Hopf Theorem [25])
Let

dx

dt
= f (x,λ), x ∈ R

n, λ ∈ R (5.56)

be a Γ -equivariant bifurcation problem withΣ ⊂ Γ × S1. Assume the linearization
of (5.56) satisfies Eq. (5.55) with eigenvalues σ(λ) ± w(λ)i , each of multiplicity m
and also

σ′(0) �= 0.

If the action of Γ is Γ -simple on R
n and Σ satisfies

dim Fix(Σ) = 2,

then there exists a unique branch of periodic solutions to f (x,λ) = 0, with period
near 2π, bifurcating from (0, 0), where the symmetry of the solution is Σ .

Example 5.28 (Premixed Flame Dynamics (continued)) In addition to stationary
symmetric cellular flame patterns, it is also possible to observe nonstationary ones
within the same experimental setup described earlier. We know the experiment is
performed over a circular burner, so it has O(2)-symmetry. We also know from
Example 5.25 that the standard action of O(2) on R

2 ≡ C is absolutely irreducible.
Thus, we cannot use the Hopf EBL over R2 because the commuting matrices are
multiples of the identity, so they cannot have complex eigenvalues as is required for
a Hopf bifurcation. However, if we set O(2) to act on R4 through a diagonal action:

ρ · (z1, z2) = (eρi z1, eρi z2)
κ · (z1, z2) = (z2, z1)

then it is possible for the commuting matrices to have complex eigenvalues, though
they will be repeated. To verify this assertion, write an arbitrary 4 × 4matrix in block
form

A =
[
A11 A12

A21 A22

]
.

And the rotation matrix in O(2) as

R =
[

Rρ O2×2

O2×2 Rρ

]
.

Then direct computations show that A commutes with R if and only if each of
its blocks commutes with Rθ. Since the only matrices that commute with Rρ are
multiple of the identity, this means that A has the form

A =
[
aI2 bI2
cI2 dI2

]
.
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The eigenvalues of A are those of

[
a b
c d

]

repeated twice. Hence, setting a = d = 0 and b = −1 and c = 0 we get a pair of
purely imaginary eigenvalues ±i , repeated twice. Thus, Hopf symmetry-breaking
bifurcation is possible overR4. Consider the idealization of the flame experiment by
a O(2)-equivariant system of ODEs

ż1 = f (z1, z2,μ)

ż2 = g(z1, z2,μ),
(5.57)

where μ is a vector of parameters. When the model equations (5.57) are written in
Birkhoff Normal Forms [5, 6], it can be shown that the model equations commute
not only with Γ but also with the circle group S1. An intuitive way of explaining
this is that S1-symmetry corresponds to the phase shift that leave periodic solutions
invariant. Thus, our flame model is then Γ × S1 symmetric. It can also be shown
that the action of this spatio-temporal group of symmetries acts on C2 as follows

ρ · (z1, z2) = (e−ρi z1, eρi z2)
κ · (z1, z2) = (z2, z1)
θ · (z1, z2) = (eθi z1, eθi z2),

(5.58)

where ρ,κ ∈ Γ = O(2) and θ ∈ S1. We know that the action of Γ = O(2) on R4 is
Γ -simple, since it is made of two copies of absolutely irreducible representations.
Then in order to apply the Equivariant Hopf Theorem we need to find isotropy sub-
groups Σ of Γ with 2D fixed-point subspaces. We can do this task by examining the
action of Γ × S1. This leads us to the following classification of isotropy subgroups
and their corresponding solutions.

Standing Waves. Periodic solutions with purely spatial symmetry are called
standing waves because they must maintain that spatial symmetry at all times, while
oscillating periodically. According to the action of Γ , the purely spatial symmetry
must be a reflectional symmetry and the corresponding solution must lie on the
invariant subspace (z, z). Observe that the axis of reflection is z = x ∈ R. This axis
does not change in time, so the periodic solution can not rotate. In other words,
if the solution has a purely spatial symmetry at any given time then it must have
that same symmetry at all times, thus rotations are impossible. The corresponding
isotropy subgroup is classified as Z2 × Zc

2 = {(0, 0), (π,π), (κ, 0), (κ, 0)(π,π)}. A
standing wave flame pattern with Z2 × Zc

2 is shown in Fig. 5.40.

Rotating Waves. Periodic solutions that remain invariant after a combination of a
purely spatial rotation by θ and a phase shift by −θ are known as rotating waves
because the combination of these two spatio-temporal symmetries indicate the exis-
tence of a periodic solution x(t) that satisfies
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Fig. 5.40 O(2) Hopf
symmetry breaking
bifurcations from a trivial
equilibrium (homogeneous
flame front) in a combustion
system [27] . (Middle-left)
Four snapshots from the
two-cell state of the flame
front that rotates clockwise.
States with the opposite
geometrical sense (i.e.,
related by reflections) rotate
counter clockwise.
(Middle-right) Standing
wave patterns

Rθ x(t) = x(t + θ), so that x(θ) = Rθ x(0). (5.59)

Any periodic solution that satisfies Eq. (5.59) is called a rotating or traveling
wave. Their isotropy subgroup is SO(2) = {(θ, θ) ∈ SO(2) × S1}.

Trivial Symmetries. Obviously the trivial spatio-temporal symmetries
(ρ, θ) = (0, 0) leave the entireR4 ≡ C2 phase space unchanged. But (ρ, θ) = (π,π)

also leave C2 unchanged. Together, these two spatio-temporal symmetries leave
C2 unchanged and they generate the isotropy subgroup Zc

2. For this reason, this
subgroup appears at the bottom of the lattice in Fig. 5.40.

Trivial Solutions. Our original assumptions indicate that the Γ -equivariant
model (5.57) admits a trivial solution of the form (z0, z0) = (0, 0). This trivial solu-
tion is fixed by the entire symmetry groupO(2) × S1. For this reason, this subgroup
appears at the top of the lattice in Fig. 5.40.
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5.9 Exercises

Exercise 5.1 Forced Damped Pendulum.
The following equation models the dynamics of a forced damped pendulum

θ̈ + b θ̇ + k sin θ = A cos(ωt)

where θ = θ(t) measures the angular position of the pendulum at time t , A is the
amplitude of a periodic force applied to the pivot point of the pendulum, and ω is the
frequency of the perturbation.

(a) Convert the equation to a first-order system.
(b) Write a Matlab program to integrate and simulate the behavior of the pendulum.
(c) Set k = 1, b = 0.5, and ω = 0.67. Simulate the dynamics for various values of

A in the range [0, 2]. Explain how the pendulum changes behavior (upon chang-
ing A) using Time Series plots and Phase Portraits of qualitatively different
solutions.

(d) Now fix A = 1.5. Then vary ω in the range [0, 2] and repeat part (c).

Exercise 5.2 Laser Dynamics. Milonni and Eberly (1988) show that after certain
reasonable approximations, quantum mechanics leads to the following model of a
laser ⎧⎪⎨

⎪⎩

dn

dt
= GnN − kn

dN

dt
= −GnN − f N + p

(5.60)

where G is the gain coefficient for stimulated emission, k is the decay rate due to
loss of photons by mirror transmission, f is the decay rate for spontaneous emission,
and p is the pump strength. All parameters are positive, except p, which can have
either sign.

(a) Suppose that N relaxes muchmore rapidly than n. Then wemaymake the quasi-
static approximation Ṅ = 0. Given this approximation, express N (t) in terms
of n(t) and derive a first-order system for n.

(b) Show that n∗ = 0 becomes unstable for p > pc, where pc is to be determined.
(c) What type of bifurcation occurs at the laser threshold pc ?
(d) For what range of parameters is it valid to make the approximation?

Exercise 5.3 Laser Dynamics (continued).
TheMaxwell-Bloch equations of a laser describe the dynamics of an electric field

E , the mean polarization P of atoms, and the population inversion D, through

Ė = κ(P − E)

Ṗ = γ1(ED − P)

Ḋ = γ2(λ + 1 − D − λEP),
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where κ is the decay rate in the laser cavity due to beam transmission, γ1 and γ2
are decay rates of the atomic polarization and population inversion, respectively, and
λ is a pumping energy parameter, which may be positive, negative, or zero; all the
other parameters are positive.

(a) Find all the equilibrium points and determine their stability.
(b) Assuming Ṗ = 0, Ḋ = 0, express P and D in terms of E , and derive a first-order

equation for E . Then study and classify the bifurcations of E in terms of λ and
draw a bifurcation diagram of E versus λ.

(c) Using the following change of variables, t = (σ/κ)τ , E = αx , P = αy, D =
r − z, γ1 = κ/σ, γ2 = κb/σ,λ = r − 1, rewriteMaxwell-Blochmodel and then
find a set parameter values (of the original laser system) where chaotic behav-
ior is present. Perform computer simulations of Maxwell-Bloch to demonstrate
sensitive dependence on initial conditions.

Exercise 5.4 Duffing Oscillator.
Consider a Duffing oscillator of the form

d2x

dt2
+ μ

dx

dt
+ λx − x3 = 0 (5.61)

where μ and λ are constant parameters.

(a) Convert the second order ODE (5.61) to a first-order system of ODE’s.
(b) Analytically, calculate all equilibrium points and study their stability.
(c) Find the curves in (μ,λ) parameter-space at which the eigenvalues of the lin-

earized Jacobian matrix, J , are purely imaginary, which is equivalent to the
condition: trace(J ) = 0 and det(J ) > 0. This locus of points is called a Hopf
bifurcation.

(d) Sketch a diagram in the (μ,λ) plane illustrating the change in stability of each
equilibrium point when both μ and λ change. Use pplane or any other equivalent
software to sketch phase portraits of different types of behaviors.

Exercise 5.5 Colpitts Oscillator. The following system of equations describes a
dimensionless version of a Colpitts oscillator

ẋ1 = g

Q(1 − k)

(−e−x2 + 1 + x3
)

ẋ2 = g

Qk
x3

ẋ3 = −Qk(1 − k)

g
(x1 + x2) − 1

Q
x3,

(5.62)

where g, Q and k are positive parameters.

(a) Compute the Jacobian matrix and evaluate it at the zero equilibrium (0, 0, 0).
(b) Calculate the characteristic polynomial associated with the eigenvalues of the

Jacobian matrix.
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(c) Calculate the eigenvalues of the Jacobian matrix by finding approximate analyt-
ical expressions to the roots of the characteristic polynomials.

(d) Show that Eq. (5.62) undergoes a Hopf bifurcation at g = 1. Show, analytically
and computationally through computer simulations, that for values of g > 1 the
trivial equilibrium state (0, 0, 0) loses stability and a stable limit cycle appears
around it.

Exercise 5.6 Glycolysis. Selkov (1968) proposed the followingmodel for glycolysis

dx

dt
= −x + a ∗ y + x2y

dy

dt
= b − a ∗ y − x2y,

where a > 0 and b > 0 are parameters.

(a) Compute the equilibrium point of this model.
(b) Find the values of a and b where the system undergoes a Hopf bifurcation.

Exercise 5.7 Trimolecular Reactions. Schnackenberg (1979) considered a class
of two-species simplest, but chemically plausible, trimolecular reactions which can
admit periodic solutions. After using the Law of Mass Action and nondimensional-
izing, Schnackenberg reduced the system to

⎧⎪⎨
⎪⎩

dx

dt
= a − x + x2y

dy

dt
= b − x2y

(5.63)

where a > 0, b > 0 are parameters and x > 0, y > 0 are dimensionless concentra-
tions.

(a) Show that the system has a unique fixed point, and classify it through the lin-
earization process.

(b) Show that the system undergoes a Hopf bifurcation when b − a = (a + b)3.
(c) Is the Hopf bifurcation subcritical or supercritical? Use a computer to decide.
(d) Plot the stability diagram in (a, b) parameter space. Hint: It is a bit confusing to

plot the curve b − a = (a + b)3, since it requires analyzing a cubic. Show that
the bifurcation curve can be expressed in parametric form a = 1

2 xE (1 − x2E ),
b = 1

2 xE (1 + x2E ), where xE > 0 is the x-coordinate of the fixed point. Then
plot the bifurcation curve from these parametric equations.

Exercise 5.8 Autoimmune Diabetes Model. A reduced 3D model for diabetes in
NOD mice was introduced by Mahaffy and Edelstein-Keshet [28]. The model has
the form:
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d A

dt
= (σ + αM) f̃1(E) − (β + δA)A − εA2 = F1(A, M, E),

dM

dt
= β2m1 f̃2(E)A − f̃1(p)αM − δMM = F2(A, M, E), (5.64)

dE

dt
= β2m2(1 − f̃2(E))A − δE E = F3(A, E),

where p ≈ (RB/δp)E , treating B as a slow varying constant, and f̃1(E) and f̃2(E)

are the nonlinear functions:

f̃1(p) = pn

kn1 + pn
and f̃2(p) = akm2

km2 + pm
.

The following Table5.3 shows parameter values that were used in this model:
a. There are three equilibria, (Ae, Me, Ee), for this model. Find these equilibria
and determine their corresponding eigenvalues. Give a brief discussion of the local
behavior near each of the equilibria, including a discussion of the dimensions of the
stable and unstable manifolds for each equilibrium. Which equilibrium represents
the healthy state andwhich one represents the diseased state?What is the significance
of the third equilibrium?
b. Simulate this system with different initial conditions and show the time series
solutions of at least two simulations that demonstrate at least two distinct behaviors
around the equilibria. (Graphs should appear quite different.) Write a paragraph
describing what you expect concerning the global behavior of this system. Also,
include a brief discussion connecting the observed behavior in your simulations to
the NOD mouse biology.

Exercise 5.9 Henon map.
Consider the map [

xn+1

yn+1

]
=
[

yn
α − βxn − y2n

]
,

where (xn+1, yn+1) ∈ R
2 and α and β are real-valued parameters. Perform the fol-

lowing tasks:

(i) Compute all fixed points and study their stability properties.
(ii) Find an analytical expression for the boundary curve in parameter space (β,α)

where a saddle-node bifurcation occurs.
(iii) Find an analytical expression for the boundary curve in parameter space (β,α)

where a period-doubling bifurcation occurs.
(iv) Find an analytical expression for the boundary curve in parameter space (β,α)

where a Neimark-Sacker bifurcation occurs.
(v) Plot all boundary curves in a single graph.
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Table 5.3 Parameters used in simulation for (5.64) for NOD mice with intact β-cells

σ = 0.02 α1 = 20 β + δA = 1 ε = 1 k1 = 2 n = 2

β2m1 = 1 a = 0.8 k2 = 1 m = 3 α2 = 2 δM = 0.01

β2m2 = 0.1 δE = 0.3 R = 50 B = 1 δp = 1 –

Exercise 5.10 Lozi Map. In 1978, Lozi introduced a 2D map which resembles the
Henon map, except that a quadratic term is replaced by a piecewise linear version of
it. The equations are:

xn+1 = 1 + yn − a|xn|
yn+1 = bxn,

(5.65)

where a and b are real non-vanishing parameters. Assume |b| ≤ 1 and perform the
following tasks.

(a) Find all fixed points and study their stability as a function of a. In particular,
study how the number of fixed points changes as a changes in relation to b.

(b) Find all isolated period-2 orbits as function of a and b and study their stability
properties. Find the range of values in parameter space (b, a)where the period-2
orbit is stable. Sketch the region of parameter space (b, a) where the fixed point
and period-2 orbits are stable.

(c) Write a computer program to generate two bifurcation diagrams. In one case, set
b = 0.1 and vary a in the interval [0 : 1.8] and plot xn . In the second case, set
a = 1.5 and now vary b in the interval [−0.75 : 0.75] and plot xn as a function
of b. Make sure that positive and negative initial conditions are used and not to
include transient behavior. Compare the diagrams with that of the logistic map.
(Turn in the code and TWO plots of the bifurcation diagram).

(d) Set a = 0.9 and b = −1.0 and set a rectangular grid (100× 100) points in (x, y)
phase-space: −50 ≤ x, y ≤ 50. Set a few random initial conditions for (x0, y0),
iterate the code to eliminate transient behavior, and then plot the remaining
points. Describe in your own words the emergent pattern.

Exercise 5.11 Linear Systems
Consider the following 2D linear system

Xn+1 = AXn, where A =
[ 3

4 − 1
8

1
2

1
4

]
, Xn =

[
xn
yn

]
.

(a) Find the general analytical solution of this model.
(b) Find the particular solution that satisfies the initial conditions X0 = (400, 600).
(c) Compute the limit of Xn as n → ∞.
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Exercise 5.12 Nonlinear Discrete System
Consider the following nonlinear system:

xn+1 = ayn(1 − yn)
yn+1 = xn

(a) Find all the nonnegative fixed points as a function of a. For which values of a
do the fixed points exist?

(b) Show that a positive fixed point bifurcates from (0, 0).
(c) Find the interval of stability of each fixed point.

Exercise 5.13 Quadratic Map
Consider the quadratic map

xn+1 = x2n + c, where c is a constant.

(a) Find all the fixed points as a function of c. For which values of c do the fixed
points exist?

(b) Plot the graph of f (x) = x2 + c, with c = −0.5. Locate the fixed points and
then use Cobwebbing with x0 = 0.8 and x0 = 1.5 to determine the stability of
each fixed point. Explain the long-term behavior of the model. In particular, can
you identify the basin of attraction of any stable fixed point?

(c) Plot the graph of f (x) = x2 + c, with c = −1.0. Locate the fixed points and
then use Cobwebbing with x0 = 0.8 and x0 = 1.75 to determine the stability of
each fixed point. Explain the long-term behavior of the model.

(d) Analytically, determine the stability of the fixed points and find the values of c
at which these points bifurcate. Classify the bifurcations.

(e) For which values of c is there a stable 2-cycle? Hint: Calculate first the period-2
orbit by solving f 2(x) = x or f ( f (x)) = x , where f = x2 + c. Factor out the
period-1 points or fixed points to simplify the algebra.

(f) Plot a partial bifurcation diagram.

Exercise 5.14 Video Feedback.
Consider the complex-valued map

zn+1 = z2n + c, (5.66)

where z = x + yi and c = a + bi . What is most significant about this map is that
it possesses virtually every type of period-multiplying cascade imaginable. That is,
for (a, b) close to zero a stable fixed point exists that bifurcates into a stable m-
cycle for any positive integer m, depending upon the path (a, b) takes in its two
dimensional parameter space. Each point of these m-cycles similarly bifurcates into
a stable k-cycle, which yields a stable cycle of periodmk. As this continues, virtually
all period-multiplying cascades can be created.

(a) Find all fixed points of this complex map as functions of c.
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(b) Study the stability of each fixed point. In particular, find an analytical expression
for the boundary curves, in the (a,b)-plane, where the fixed points are stable. Plot
the resulting boundary curves in the (a, b)-plane. Suggestion: Set f ′(z f p) =
reiθ, where z f p is a fixed point, and then solve for c.

(c) Repeat part (a) and (b) for period-2 points.
(d) Draw the parameter-space of this map with the following algorithm: (i) Set a

rectangular grid (200 × 200) points in (a, b) parameter space: −2.4 ≤ a ≤ 1.2,
−1.5 ≤ b ≤ 1.5. (i) For each point (a, b), iterate the map (5.66) starting with
z0 = 0 + 0i . This will produce the orbit of c. (iii) If after N iterations (about 50),
the orbit remains bounded (within a circle of radius 4) then the point (a, b) is
colored black. If the orbit escapes the circle of radius 4 after n iterations, where
1 < n < 50, then the point is colored black if n is even and white if n is odd.

(e) Generate a bifurcation diagram for the real-valued map xn+1 = x2n + c, where
−2.4 ≤ c ≤ 1.2. In one graph, plot both the parameter-space diagram from part
(d) and the bifurcation diagram from (e). Discuss the results. What does the
bifurcation diagram tell you about the phase diagram?

Exercise 5.15 Find the irreducible representations of the cyclic group Z3 over the
complex C. Then determine a nonabsolutely irreducible representation.

Exercise 5.16 Show that the symmetry group of a rectangle is Abelian. Note: A
group Γ is Abelian if all the group elements commute. That is: γ1γ2 = γ2γ1 for all
γ1, γ2 ∈ Γ .

Exercise 5.17 Consider a steady-state bifurcation problem on a square domain with
Γ = D4-symmetry. This group is generated by rotationsρ = R2π/4 andby a reflection
κ across the y-axis. Perform the following tasks:

(a) Write down all the elements of the group.
(b) Consider the natural representation and find all thematrices of this representation

that correspond to each group element.
(c) Find all the isotropy subgroups Σ of D4 with one-dimensional fixed point sub-

spaces.
(d) Classify all possible symmetry-breaking steady-state bifurcations according to

their isotropy subgroups.

Exercise 5.18 Repeat the previous exercise with Γ = D3 symmetry.

Exercise 5.19 Hopf Bifurcation with Γ = Z2-symmetry. Consider the one-
dimensional nontrivial representation in which the group Z2 × S1 acts as

(κ, 0) · z =
(e, θ) · z = eθi z.

Study the symmetry-breaking periodic solutions that emerge via Hopf bifurca-
tions. Explain the form of the periodic solutions.
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Exercise 5.20 Hopf Bifurcation with Γ = D3-symmetry. Consider the two-
dimensional nontrivial representation in which the group D3 × S1 acts as

ρ · (z1, z2) = (e−ρi z1, eρi z2)
κ · (z1, z2) = (z2, z1)
θ · (z1, z2) = (eθi z1, eθi z2),

where ρ = 2π/3 and θ ∈ S1. Notice that this is the same action as that ofO(2) × S1

restricted to ρ = 2π/3.
Study the symmetry-breaking periodic solutions that emerge via Hopf bifurca-

tions. Explain the form of the periodic solutions.

Exercise 5.21 Show that the Ricker model (3.13) exhibits a transcritical bifurcation
at α = 1.

Exercise 5.22 Show that the quadratic model (5.21) exhibits a transcritical bifurca-
tion at c = 1/4.
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Chapter 6
Network-Based Modeling

Some continuous models are developed and analyzed in Chaps. 4 and 5. The models
studied are fairly low dimensional, which allowed complete analysis. This chapter
extends our modeling techniques to higher dimensional problems, especially ones
with certain symmetries. Systems made up of individual units coupled together,
either weakly or tightly, create an important class of models described as complex
networks. Many studies, including ongoing research, consider individual identical
neurons described byODEs, which are coupled in various ways to each other through
excitatory and/or inhibitory connections. These studies of neural networks find pat-
terns of behavior to explain observed phenomena.

Studies of complex networks span a variety of fields. The dynamics of arrays of
Josephson junctions [1–4], central pattern generators in biological systems [5–7],
coupled laser systems [8, 9], synchronization of chaotic oscillators [10, 11], collec-
tive behavior of bubbles in fluidization [12], the flocking of birds [13], and synchro-
nization among interconnected biological and electronic nonlinear oscillators are a
few representative examples of these models. There are three primary components
to this class of models. First, each unit or compartment forms the internal dynam-
ics and is described by an ODE or small set of ODEs. Second, there is a topology
of connections, where each unit or compartment sends and/or receives information
from one or more of the other related components in the model, creating the network.
Finally, the type of coupling, including the strength of the connection and whether it
has a negative or positive feedback, plays an important role in these systems. Much
of the interest in these network models arises from the fact that the individual units
cannot exhibit the complex behavior of the entire network.

This chapter begins with an analytical tool for determining asymptotic stability
of large systems of linear ODEs. Subsequently, a number of network models are
developed and analyzed showing variations in the basic model equations governing
each individual unit, differing topologies of connections, and a variety of types of
coupling between the units. Analysis of these systems show the robustness of certain
structures and allow perturbations to the assumption of identical individual units. The
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models introduce how symmetry alone can restrict the type of solutions. The work of
Golubitsky [14–16] lays down the theoretical foundations for a model-independent
analysis to understand and predict the behavior of a dynamical system using the
underlying symmetries of the system, while separating the fine details of the model.
The examples below illustrate how these complex network models are successful in
explaining numerous theoretical and experimental observations, providing valuable
analytic modeling tools. Moreover, our examples extend the theoretical studies to
practical cases that showcase how suchmodels are used to design novel technologies.

6.1 Routh-Hurwitz Criterion

This chapter examines a number of potentially large systems with symmetries. An
important aspect of systems control is knowing when a dynamical system is sta-
ble. These systems, which arise in modeling electric circuits, structural design, and
other related problems, can have high dimensions, complicating stability analysis.
In Chap. 4 local stability is established for a system of ODEs at its equilibria from
its linearization and determining if all eigenvalues have negative real part from the
characteristic polynomial. (See the StableManifold Theorem 4.3.)More specifically,
consider a nonlinear autonomous system of the form:

dX

dt
= F(X,μ), (6.1)

where X ∈ R
N is the state variable and μ ∈ R

p is a vector of parameters. Assume
X0 is an equilibrium. By a suitable change of coordinates, it is always possible to
shift X0 to the origin. Thus, without loss of generality, we may assume X0 = 0. The
linearization of Eq. (6.1) about X0 yields the Jacobian matrix

(dF)(0,0) =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦ .

The stability of the trivial equilibrium is determined by the signs of the real parts
of the eigenvalues of the Jacobian matrix (dF)(0,0). These eigenvalues are obtained
by solving the auxiliary equation

det((dF)(0,0) − λI ) = 0,

which leads to finding the roots of the characteristic polynomial

f (λ) = a0λ
n + a1λ

n−1 + a2λ
n−2 + · · · + an = 0, a0 �= 0. (6.2)
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However, determining the roots of the characteristic polynomial is a non-trivial
problem. One tool from control theory, which allow us to determine whether all roots
have negative real parts without solving the characteristic polynomial itself, is the
Routh-Hurwitz Criterion [17, 18].

Proposition 6.1 Consider the characteristic Eq. (6.2) and assume a0 > 0. If any,
ai < 0, for i = 1, . . . , n, then there exists some root, λ, with Re(˘) > 0. So if (6.2)
is the characteristic equation for some system of ODEs, then the zero equilibrium of
that system is unstable.

This Proposition shows that a necessary condition for stability of the equilibrium
of a system of ODEs is that its characteristic Eq. (6.2) has all of the ai > 0, for
i = 0, . . . , n. The Routh-Hurwitz Criterion gives necessary and sufficient conditions
for stability of the equilibrium of a system of ODEs.

Theorem 6.1 (Routh-HurwitzCriterion)All roots of the characteristicEq. (6.2)with
a0 > 0 have negative real parts if and only if the following determinant inequalities:

|a1| > 0,

∣∣∣∣
a1 a3
a0 a2

∣∣∣∣ > 0,

∣∣∣∣∣∣
a1 a3 a5
a0 a2 a4
0 a1 a3

∣∣∣∣∣∣
> 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 · · · 0
a0 a2 a4 · · · 0
0 a1 a3 · · · 0
0 a0 a2 · · · 0
...

...
...

. . .
...

· · · · an

∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0, (6.3)

hold.

The proof of this theorem and several alternative forms can be found in Gant-
macher [17]. This result provides a valuable tool for determining the stability of
equilibrium points in high dimensional ODEs after finding the characteristic equa-
tion, which itself may not be a trivial problem.

6.1.1 Spring-Mass System

This section uses the Routh-Hurwitz Criterion to prove the stability of a symmetric
system of springs and masses. Consider the two mass and three spring system shown
in Fig. 6.1, where the masses and the spring are identical. Since this system loses
energy through the viscous damping, c, occurring the same on eachmass, one expects
that the system of ODEs describing this model should be asymptotically stable.

The model for the system shown in Fig. 6.1 uses Newton’s Second Law and
extends the example shown in Sect. 4.8.1. The two masses are described by their
independent positions, x1 and x2, where it is assumed the system is at equilibrium
for x1e = 0 and x2e = 0. Applying Newton’s Second Law to each of the masses gives
the following linear system of second order ODEs:
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Fig. 6.1 Two mass and three spring system, where the masses, m, and the spring constants, k, are
identical. In addition, the masses experience the same viscous damping effects, c

mẍ1 = −kx1 + k(x2 − x1) − cẋ1 = −2kx1 + kx2 − cẋ1,

mẍ2 = −kx2 + k(x1 − x2) − cẋ2 = −2kx2 + kx1 − cẋ2.
(6.4)

To convert Eq. (6.4) into a system of first order ODEs, we let

y1 = x1, y2 = ẋ1, y3 = x2, and y4 = ẋ2.

In matrix form this system becomes:

ẏ =

⎛
⎜⎜⎝
ẏ1
ẏ2
ẏ3
ẏ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 1 0 0
− 2k

m − c
m

k
m 0

0 0 0 1
k
m 0 − 2k

m − c
m

⎞
⎟⎟⎠

⎛
⎜⎜⎝
y1
y2
y3
y4

⎞
⎟⎟⎠ = Ay, (6.5)

where y1 and y2 are the position and velocity, respectively of the first mass, and y3
and y4 are the same for the second mass.

6.1.2 Stability of Spring-Mass System

Since Eq. (6.5) is a system of linear ODEs, the characteristic equation is computed
by solving det |A − λI | = 0. As the matrix A has many zeroes, this determinant is
readily expanded to give the following characteristic equation:

det |A − λI | = λ4 + 2c
m λ3 + c2+4km

m2 λ2 + 4kc
m2 λ + 3k2

m2 = 0. (6.6)

It is obvious that this characteristic equation satisfies the necessary conditions of
Proposition 6.1 for the zero equilibrium of Eq. (6.5) to be stable. Thus, it remains to
verify the conditions of the Routh-Hurwitz Criterion Theorem6.1. From the charac-
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Fig. 6.2 Time series solutions of a two spring-mass system confirm stability of the zero equilibrium,
as predicted by the Rouht-Horowitz criterion

teristic equation we have a0 = 1 > 0 and a1 = 2c
m > 0. Examining the other deter-

minants gives: ∣∣∣∣
a1 a3
a0 a2

∣∣∣∣ =
∣∣∣∣
2c
m

4kc
m2

1 c2+4km
m2

∣∣∣∣ =
2c3

m3
+ 4ck

m2
> 0,

and ∣∣∣∣∣∣
a1 a3 0
a0 a2 a4
0 a1 a3

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

2c
m

4kc
m2 0

1 c2+4km
m2

3k2

m2

0 2c
m

4kc
m2

∣∣∣∣∣∣∣∣
= 8kc4

m5
+ 4c2k2

m4
> 0,

and
∣∣∣∣∣∣∣∣

a1 a3 0 0
a0 a2 a4 0
0 a1 a3 0
0 a0 a2 a4

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

2c
m

4kc
m2 0 0

1 c2+4km
m2

3k2

m2 0

0 2c
m

4kc
m2 0

0 1 c2+4km
m2

3k2

m2

∣∣∣∣∣∣∣∣∣∣∣

= 24k3c4

m7
+ 12c2k4

m6
> 0.

It follows that the Routh-Hurwitz Criterion Theorem6.1 holds, so the trivial equilib-
rium of Eq. (6.5) is asymptotically stable, as we predicted from the physical system.
Figure 6.2 illustrates the stability of the zero equilibrium through numerical simula-
tions. Observe that in one case the masses oscillate in-phase with one another, while
they approach the zero equilibrium, and in the other case the oscillations are out-
of-phase. We will discuss these features (e.g., in-phase and out-of-phase oscillations
shortly).

Another way of interpreting the two spring-mass system is as a network of two
identical units or cells, which are coupled together to form a larger system. This
interpretation leads to the formalism of a coupled cell system.
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Fig. 6.3 Representative
example of a network model
represented by a collection
of a discrete number of units
or cells, coupled in some
fashion. Each “cell” or unit
has its own internal dynamics
governed by a continuous
model. In this example, λi j ,
defines the coupling strength
from node i into node j

6.2 Coupled Cell Systems

A natural mathematical framework for the analysis of network models is that of
a coupled cell system. By a “cell” we mean an individual component or unit that
possesses its own dynamical behavior. Figure 6.3 shows a representative example
with N cells and with coupling strengths varying among different nodes.

In what follows, we assume a coupled network with N cells, and consider the
internal dynamics of each cell to be governed by a k-dimensional continuous-time
system of differential equations of the form

dXi

dt
= fi (Xi ,μ), (6.7)

where Xi = (xi1, . . . , xik) ∈ R
k denotes the state variables of cell i and

μ = (μ1, . . . ,μp) is a vector of parameters. Observe that, in this formulation, f
depends on i , which implies that the dynamics of each cell can be different. On the
other hand, if f is independent of i , then all individual cells would behave identically.
The distinction between nonidentical and identical cells lead to two different type of
networks. We discuss next these two types of systems in more detail.

Definition 6.1 A heterogeneous network is a collection of N distinct cells intercon-
nected in some fashion. We model the network by the following system of coupled
differential equations

dXi

dt
= fi (Xi ,μ) +

∑
j→i

ci j h(Xi , X j ), (6.8)

where h is the coupling function between two cells, the summation is taken over
those cells j that are coupled to cell i , and ci j is a matrix of coupling strengths.
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Fig. 6.4 Two spring-mass
system visualized as a
coupled cell system

Heterogeneous coupled networks of (two-dimensional) biological oscillators, in
which the internal dynamics fi of each individual cell exhibits a limit cycle oscilla-
tion, have been extensively studied by Winfree [19, 20]. Winfree’s work shows that
under certain assumptions, mainly weak coupling, the phase-amplitude dynamics
decouples, so that the model equations can be reduced to a network of phase oscilla-
tors. The reduction led Kuramoto [21, 22] to show, eventually, that under additional
assumptions it was possible to obtain conditions for the existence of analytical solu-
tions.

In contrast, in the studies of diffusion-drive instabilities (see Chap. 8, Sect. 8.2),
Alan Turing proposed that under certain conditions, coupled networks with identical
cell dynamics can react and diffuse in such a way to destabilize a equilibrium point,
thus leading to a heterogenous pattern. These type of networks are defined next.

Definition 6.2 A homogenous network is a coupled network in which

fi (Xi ) = f (Xi ),

for all cells in the network.

Most of the networks considered in this chapter are homogeneous networks. Addi-
tionally, if we let X = (X1, . . . , XN ) denote the state variable of the network, and
F = ( f1, . . . , fN ) as the vector of the internal dynamics of each cell, then we can
write (6.8) in the simpler form

dX

dt
= F(X),

where the dependence on the parameters μ has been omitted for brevity. Let’s take
a look at a couple of concrete examples of network systems to get some insight into
the main ideas and concepts.

Example 6.1 (Spring-Mass System) Consider again the two spring-mass system of
Fig. 6.1. Since themasses are identical, we can interpret the system as a homogeneous
network with two cells, as is shown in Fig. 6.4. Since the cells are identical, it follows
that the network has

Γ = D2

symmetry, where D2 is the orthogonal group of symmetries of a rectangle.

If we let Y1 = [y1, y2]T and Y2 = [y3, y4]T , then we can re-write Eq. (6.5) as a
homogeneous coupled cell system of the form
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Ẏ1 = f (Y1;μ) + C(k)(Y2 − Y1)

Ẏ2 = f (Y2;μ) + C(k)(Y1 − Y2),
(6.9)

where the internal dynamics of each mass, j = 1, 2, and the coupling matrix, C , are
given by

f (Y j ;μ) =
⎡
⎣

0 1

− k

m
− c

m

⎤
⎦ , C(k) =

⎡
⎣

0 0

− k

m
0

⎤
⎦ .

with parameters μ = [m, c, k]T . The linearization of Eq. (6.9) can be expressed as

L =
[
(d f )(0,0) − C C

C (d f )(0,0) − C

]
.

To study the linearization of Eq. (6.9) about the zero equilibrium Y0 = (0, 0, 0, 0),
we first note that Y1 ∈ R

2 and Y2 ∈ R
2, so that the phase-space of the coupled cell

system is R4. Then we complexify from R
4 to C4, and, next, we employ the isotypic

decomposition of C4 by Γ = D2, which is given by

C4 = V0 ⊕ V1,

where the cyclic nature of L leads directly to the subspaces Vj ′s :

V0 = [v, v]T ,

V1 = [v, ζv]T ,

where ζ = e2πi/2 = −1 and v ∈ R
2. In fact, the subspaces Vj ′s are eigenvectors

V0 = [v, v]T ,

V1 = [v,−v]T ,

of the linearized matrix L of Eq. (6.11). Direct calculations yield:

LV0 = (d f )(0,0)V0,

LV1 = ((d f )(0,0) − 2C(λ))V1.

Using coordinates along the isotypic components, we find the eigenvalues of the
linearization, L , to be those of the matrices:

(d f )(0,0), and (d f )(0,0) − 2C(k).
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Fig. 6.5 In-phase and out-of-phase oscillations in a two spring mass system, predicted on the basis
of symmetry of a coupled network

Consequently, a Hopf bifurcation in the network Eq. (6.9) is possible if the eigen-
values of the matrices (d f )(0,0) or (d f )(0,0) − 2C(k) are purely imaginary. Direct
calculations yield, respectively, the following eigenvalues

σ1,2 = − c

m
± 1

2m

√
c2 − 4km, σ3,4 = − c

m
± 1

2m

√
c2 − 12km.

Thus, in the absence of damping, i.e., when c = 0, we can get purely imaginary
eigenvalues:

σ1,2 = ±
√

k

m
i, σ3,4 = ±

√
3k

m
i.

Each pair of eigenvalues is associated with a different mode of oscillation. Since
the eigenvalues are simple, it follows that the two modes of oscillations correspond
to standard Hopf bifurcation. The first mode is associated with the subspace V0 =
[v, v]T , so the collective pattern corresponds to synchronized oscillations, i.e., same
wave form and same phase, with frequencyω1 = √

k/m, as is shown in Fig. 6.5(left).
Similarly, the second mode of oscillation is associated with the second subspace,
V1 = [v,−v]T , so the collective pattern corresponds to out-of-phase oscillations,
with frequency ω2 = √

3k/m, see Fig. 6.5(right).
These collective patterns of oscillations are model-independent features of the

symmetry of the network. That is, they can be observed with completely different
sets of oscillators, as long as the symmetries and Hopf bifurcations are preserved.
And while the patterns appeared via standard Hopf bifurcations, it is also possible
to have patterns that appear via symmetry-breaking bifurcations.

6.3 Self-Oscillating Networks

Many systems are known to oscillate only when they are driven by an external
force. A single fluxgate magnetometer discussed in Chap.4 is one representative
example. Indeed, recall that oscillations in the fluxgate model Eq. (4.73) can only
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Fig. 6.6 Bidirectionally
coupled network with D3
symmetry

be sustained under the presence of a nonzero external biasing signal He(t). That is,
only when the model is non-autonomous. Yet, it might be possible, however, for
an autonomous system to produce oscillations even if the individual units cannot
oscillate. This dichotomy is resolved by considering the effects of coupling. That
is, in the absence of coupling (i.e., a coupled cell system with zero coupling matrix
ci j = 0), the individual cells might not oscillate. But when the coupling is on then
the collective network may be able to produce oscillations. This effect was first
noticed by Smale [23] in his studies of a two-cell coupled system. In principle, the
effect can be applied to create network of fluxgate magnetometer with self-sustained
oscillations. But before we study that system in greater detail, let’s take a look at a
phenomenological model of self-induced oscillations in a (relatively simple) three-
cell coupled system.

Example 6.2 (Three Bidirectionally Coupled Oscillators) Consider the three-cell
network illustrated in Fig. 6.6, in which each cell is described by a two-state variable
X j = (x j , y j ), where j = 1, 2, 3. And each cell is coupled bidirectionally to its
nearest neighbor.

Thus, the internal dynamics of each cell is governed by a two-dimensional system
f (X j ). In this particular example, the internal dynamics is given by

f (X j ; λ) =
[−4 1

−1 −4

] [
x j
y j

]
+ p(x2j + y2j )

[
x j
y j

]
+ q(x2j + y2j )

[−y j
x j

]
+ 2C(λ)

[
x j
y j

]
,

(6.10)
where the coupling matrix C(λ) is given by

C(λ) = λ

[−4 2
−2 −4

]
.

The homogeneous network equations can then be written as follows

Ẋ1 = f (X1;λ) + C(λ)(X3 − 2X1 + X2)

Ẋ2 = f (X2;λ) + C(λ)(X1 − 2X2 + X3)

Ẋ3 = f (X3;λ) + C(λ)(X2 − 2X3 + X1).

(6.11)

Figure 6.7 illustrates the effects of coupling on the network’s response. When
coupling is absent, i.e., λ = 0, none of the units is capable of oscillating, as is shown
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Fig. 6.7 (Left) In the absence of coupling, i.e., λ = 0, none of the nodes in the network of Fig. 6.6
can oscillate. (right) But with small coupling, λ = 1.05, the network can, collectively, oscillate in
a traveling wave pattern. Parameters are: p = −5, q = 30

in Fig. 6.7(left). But with a small amount of coupling strength, e.g., λ = 1.05, the
collective response leads to oscillations, see Fig. 6.7(right).

Bifurcation Analysis

Generically, there are two mechanisms that can lead to oscillatory behavior in the
network dynamics: via standard Hopf bifurcations, which can be associated with
completely synchronized solutions, i.e., symmetry-preserving oscillations, or via
symmetry-breaking Hopf bifurcations, which can be associated with collective pat-
terns of oscillations. To investigate both types of Hopf bifurcations, we first notice
that bidirectional coupling leads to a symmetric network, in which the symmetries
are described by the group of symmetries of a triangle, that is

Γ = D3.

Next, we compute the linearization of the network equations near the zero equi-
librium X = (X1, X2, X3) = (0, 0, 0), which yields

L =
⎡
⎣

(d f )(0,0) − 2C(λ) C(λ) C(λ)

C(λ) (d f )(0,0) − 2C(λ) C(λ)

C(λ) C(λ) (d f )(0,0) − 2C(λ)

⎤
⎦ ,

where (d f )(0,0) is the linearization of the internal dynamics of each cell at the trivial
equilibrium (X,λ) = (0, 0). Since the internal dynamics of each individual cell is
governed by a two-dimensional system, then it follows that R6 is the phase-space of
the entire network. To study the linearization, L , of the network dynamics, we com-
plexify from R

6 to C6, and then, we employ the well-known isotypic decomposition
of C6 by Γ = D3, which is given by

C6 = V0 ⊕ V1 ⊕ V2,

where, the cyclic nature of L leads directly to the subspaces Vj ′s :
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V0 = [v, v, v]T ,

V1 = [v, ζv, ζ2v]T ,

V2 = [v, ζ2v, ζv]T ,

where ζ = e2πi/3 and v ∈ R
2. In fact, the subspaces Vj ′s are eigenvectors of the

linearized matrix L of Eq. (6.11). Direct calculations yield:

LV0 = (d f )(0,0)V0,

LV1 = ((d f )(0,0) − 3C(λ))V1,

LV2 = ((d f )(0,0) − 3C(λ))V2.

Consequently, using coordinates along the isotypic components,wefind the eigen-
values of the linearization, L , to be those of the matrices:

(d f )(0,0) and (d f )(0,0) − 3C(λ) (twice).

It follows that aHopf bifurcation in the networkEq. (6.11)mayoccur provided that
the eigenvalues of the matrices (d f )(0,0) or (d f )(0,0) − 3C(λ) are purely imaginary.
These eigenvalues are: σ1 = −4 ± i and σ2,3 = −4 + 12λ ± 3i , respectively.

Actually, taking coordinates along the isotypic decomposition allows us to diag-
onalize the linearization matrix L , so the eigenvalues can be more easily computed.
To see this, let e1, e2 be the canonical basis of R2 and define

v j i = [ei , ζ j ei , ζ
2 j ei ]T ,

for i = 1, 2, and j = 0, 1, 2. Then a real basis for �2N is

{
v0,1, v02,	11,	12,�11,�12

}
,

where 	 jk and� jk denote the imaginary and real part, respectively, of the vector v jk .

A straightforward computation shows that the transition matrix P which brings
the system to block diagonal form of the isotypic decomposition has columns given
by the basis vectors. That is,

P = [v0,1, v02,	11,	12,�11,�12
]
.

Thus, applying the substitution

X = PU,

to the linear part of Eq. (6.11), we obtain
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L = P−1LP =
⎡
⎣

(d f )(0,0) 0 0
0 (d f )(0,0) − 3C(λ) 0
0 0 (d f )(0,0) − 3C(λ)

⎤
⎦ .

The same transformation can be applied to the nonlinear part of system (6.11).
The important fact here is that the isotypic decomposition of the phase space allows
us to write the linear part in diagonal form and then compute its eigenvalues directly
from each block.

To uncover the type of collective patterns that may emerge through these Hopf
bifurcations, we need to study in more detail the action of the group of symmetries,
Γ = D3, on the phase spaceR6.D3 has two generators, a cyclic rotation, γ, by 2π/3,
and a reflection, κ. Together, these two generators act on R

6 as follows

γ · (X0, X1, X2) = (X1, X2, X0)

κ · (X0, X1, X2) = (X0, X2, X1).

Consider the first subspace V0. Observe that both γ and κ act trivially on V0.
Since v ∈ R

2, it follows that D3 acts on V0 by 2 copies of the trivial action on R.
Furthermore, the eigenvalues of (d f )(0,0) = −4 ± i are simple, so it follows that
this case corresponds to a standard Hopf bifurcation. And since D3 acts trivially on
V0, the collective pattern is one where all cells oscillates identically, i.e., complete
synchronization–same wave form and same phase for each cell.

Now, consider the subspaces V1 and V2. In fact, consider the invariant compliment
subspace, V1 ⊕ V2 = R

4, to V0. It can be shown that this compliment subspace is
the sum of two copies of the nontrivial action of D3 on R

2. And if [u, v, w] ∈ R
6

then V1 ⊕ V2 is spanned by [v,w,−v − w]. This time the corresponding eigenval-
ues of (d f )(0,0) − 3C(λ) = −4 + 12λ ± 3i have multiplicity two, and the patterns
of collective behavior emerge via D3 symmetry-breaking Hopf bifurcations. The
corresponding theory [15] indicates three possible patterns, which can be described
based on their isotropy subgroups, ΣX , of symmetries, as follows.

(i) ΣX = Z̃3.
This pattern is a standard traveling wave in which consecutive cells oscillate
out of phase by 2π/3, as is shown in Fig. 6.7(right).

(ii) ΣX = Z2(κ).
In this case two cells oscillate identically while the third cell oscillates with a
different wave form.

(iii) ΣX = Z2(κ,π).
Two cells oscillate with the same waveform but out of phase by π while the
third cell oscillates at twice the frequency of the other two cells. In this sense,
the third cell is said to be π out of phase with itself.
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Fig. 6.8 Unidirectionally
coupled network with Z3
symmetry

6.4 Unidirectionally Coupled Colpitts Oscillators

We now consider a three-cell network, similar to that of thew previous example, but
with unidirectional coupling, as is shown in Fig. 6.8. In this case, each individual
node is capable of producing its own oscillations.

If we let X j = [x j,1, x j,2, x j,3
]T

then the homogeneous network equations can be
written as follows

Ẋ1 = f (X1) + C(λ)(X2 − X1)

Ẋ2 = f (X2) + C(λ)(X3 − X2)

Ẋ3 = f (X3) + C(λ)(X1 − X3),

(6.12)

where f (X j ) contains the internal dynamics of a Colpitts oscillator (see Exercises
in Chap.4). In fact, we assume a dimensionless, ideal model, where the internal
dynamics of each oscillator is of the form:

f (X j ) =

⎡
⎢⎢⎢⎢⎢⎣

g

Q(1 − κ)

[− (e−x j,2 − 1
)+ x j,3

]

g

Qκ
x j,3

−Qκ(1 − κ)

g
(x j,1 + x j,2) − 1

Q
x j,3

⎤
⎥⎥⎥⎥⎥⎦

and C(λ) is the coupling matrix

C(λ) = λ

⎡
⎣
1 0 0
0 0 0
0 0 0

⎤
⎦ .

Bifurcation Analysis

This time the phase space is R9 since each cell is governed by a tree-dimensional
system of equations. Due to the nature of the unidirectional coupling, the network
remains unchanged under cyclic permutations of the nodes. Thismeans that the group
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Γ = Z3,

of cyclic permutations of N = 3 objects, defines the group of symmetries of the
network. Next, we compute the linearization of the network equations near the zero
equilibrium, X = (X1, X2, X3) = (0, 0, 0), which yields

L =
⎡
⎣

(d f )(0,0) − C(λ) C(λ) 0
0 (d f )(0,0) − C(λ) C(λ)

C(λ) 0 (d f )(0,0) − C(λ)

⎤
⎦ ,

where (d f )(0,0) is the linearization of the internal dynamics of each cell at the trivial
equilibrium (X,λ) = (0, 0). Since the internal dynamics of each individual cell is
governed by a three-dimensional system, then it follows thatR9 is the phase-space of
the entire network. To study the linearization, L , of the network dynamics, we com-
plexify from R

9 to C9, and then, we employ the well-known isotypic decomposition
of C9 by Γ = Z3, which is given by

C9 = V0 ⊕ V1 ⊕ V2,

where, the cyclic nature of L leads directly to the subspaces Vj ′s :

V0 = [v, v, v]T ,

V1 = [v, ζv, ζ2v]T ,

V2 = [v, ζ2v, ζv]T ,

where ζ = e2πi/3 and v ∈ R
3. As in the previous case of bidirectional coupling,

the subspaces Vj ′s are eigenvectors of the linearized matrix L of Eq. (6.12). Direct
calculations yield:

LV0 = (d f )(0,0)V0,

LV1 = ((d f )(0,0) − C(λ) + ζC(λ))V1,

LV2 = ((d f )(0,0) − C(λ) + ζ2C(λ))V2.

Consequently, the eigenvalues of L are those of the matrices:

(d f )(0,0), (d f )(0,0) − C(λ) + ζC(λ), and (d f )(0,0) − C(λ) + ζ2C(λ).

It follows that aHopf bifurcation in the networkEq. (6.12)mayoccur provided that
the eigenvalues of the matrices (d f )(0,0) or (d f )(0,0) − C(λ) + ζC(λ) or (d f )(0,0) −
C(λ) + ζ2C(λ) are purely imaginary.

We can also compute explicitly the transformation matrix P , which allows us to
diagonalize the linearization matrix, L along the isotypic components. To do that,
let {e1, e2, e3, } be the canonical basis of R3 and define
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v j i = [ei , ζ j ei , ζ
2 j ei ]T ,

for i = 1, 2, 3, and j = 0, 1, 2. Then a real basis for �3N is

{
v0,1, v02, v03,	11,	12,	13,�11,�12,�13

}
,

where 	 jk and� jk denote the imaginary and real part, respectively, of the vector v jk .
A straightforward computation shows that the transition matrix P which brings

the system to block diagonal form of the isotypic decomposition has columns given
by the basis vectors. That is,

P = [v0,1, v02, v03,	11,	12,	13,�11,�12,�13
]

Thus, applying the substitution

X = PU,

to the linear part of Eq. (6.12), we obtain

L = P−1LP =
⎡
⎣

(d f )(0,0) 0 0
0 (d f )(0,0) − C(λ) + ζC(λ) 0
0 0 (d f )(0,0) − C(λ) + ζ2C(λ)

⎤
⎦ .

In Sect. 5.5.5 we studied the eigenvalues of (d f )(0,0), which correspond to the
linearization of the internal dynamics of each (assumed to be identical) colpitts
oscillator. It is important to recall them here

σ1 = − 1 + gQ2

Q
(
Q2 + 1

) ,

σ2,3 = Q

2
(
Q2 + 1

) (g − 1) ±
[
1 + 1

2
(
Q2 + 1

) (g − 1)

]
i.

Observe that when g = 1 the first eigenvalue, σ1, is real and negative (since
the quality factor Q is always positive), while the remaining eigenvalues σ2,3 are
purely imaginary, i.e., σ2,3 = 0 ± i . This appears to be a Hopf bifurcation. Indeed,
in Sect. 5.5.5 we showed proof that a supercritical Hopf bifurcation occurs at g = 1.
In the context of coupled colpitts, the block matrix (d f )(0,0) corresponds to the triv-
ial representation of the symmetry group Z3. Since the eigenvalues of (d f )(0,0) are
simple, it follows that this case corresponds to a standard Hopf bifurcation. In other
words, a symmetry-preserving Hopf bifurcation that leads to in-phase oscillations,
same wave form and same period. Furthermore, the eigenvalues of (d f )(0,0) are
invariant under changes of coupling strength. Then, the branch of in-phase oscilla-
tions exists for all values of λ.
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We now derive expressions to approximate the eigenvalues of the remaining
blocks. Let

M1 = (d f )(0,0) − C(λ) + ζC(λ)

M2 = (d f )(0,0) − C(λ) + ζ2C(λ).

If we letA = −1 + cos(2π/3) ± sin(2π/3)i then the blocksM1 andM2 can be
written as

M1,2 =

⎡
⎢⎢⎢⎢⎢⎣

Aλ
g

Q(1 − κ)

g

Q(1 − κ)

0 0
g

Qk
−Qκ(1 − κ)

g

−Qκ(1 − κ)

g
− 1

Q

⎤
⎥⎥⎥⎥⎥⎦

,

where M1 is recovered when the positive sign in A is used and, likewise, M2 is
obtained when the negative sign in A is used.

Eigenvalues of both,M1,2, are given by the roots of the characteristic polynomial

σ3 +
(
1

Q
− Aλ

)
σ2 +

(
1 − Aλ

Q

)
σ + Aλ(κ − 1) + g

Q
= 0. (6.13)

Observe that when λ = 0 (i.e., in the absence of coupling) the characteristic
polynomial Eq. (6.13) reduces to that of the single colpitts oscillator of Eq. (5.37).
We consider the case of small coupling strength, so we let λ = 0 + ε, |ε| 
 1. Then
we seek an approximate value of the eigenvalues and write

σM
1 = σ1 + a1ε

σM
2,3 = σ2,3 + a2,3ε,

where a1 and a2,3 are unknown coefficients that can be found via linear approxima-
tions, i.e., asymptotic approximations up to order ε. Indeed, substituting σM

1 into
Eq. (6.13) and collecting first-order terms in ε, we find

a1 = A(σ2
1Q + σ1 + Q(1 − κ))

3σ2
1Q + 2σ1 + Q

.

This leads to

σM1
1 =

[−ε

2

(
β2

Q
− β

Q
− Qk + Q

)

(
3

β2

Q
+ Q + −2

β

Q

) − β

Q

]
+
[

√
3

2
ε

(
β2

Q
− β

Q
− Qk + Q

)

(
3

β2

Q
+ Q − 2

β

Q

)
]
i,

where
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β = Q2g − 1

Q(Q2 + 1)
.

The eigenvalues σM2
1 are complex conjugate to those of σM1

1 . The eigenvalues
σM
2,3 are computed in a similar fashion. We leave this task as an exercise. It is impor-

tant, however, to point out that the eigenvalues σM2
2,3 are also complex conjugate

to those of σM1
2,3 . Overall, there are three pairs of complex conjugate eigenvalues

between M1 and M2. At a point of Hopf bifurcation, in which the real part of the
eigenvalues is zero, purely imaginary eigenvalues are repeated twice. It follows that
the pattern of collective behavior, a traveling wave, emerges via symmetry-breaking
Hopf bifurcation.

6.5 Multifrequency Patterns

The process of generating new frequencies from an original oscillatory signal, either
up-converting or down-converting the input signal, is of great interest in Physics and
Engineering with applications that include: radio frequency communications, sen-
sitive optical detection, music synthesis, acoustic and optical resonators, amplitude
modulation, image extraction, and phase-noise measurements [24–30].

In this chapter we describe some innovativemethods [31–34], and the correspond-
ing models, to achieve frequency up- and down-conversion. The fundamental idea is
to exploit the inherent symmetry of networks to produce collective behavior in which
certain oscillators tend to oscillate at different frequencies. This concept is signifi-
cantly different from other techniques, e.g., master-slave systems, in the sense that
the collective behavior arises naturally from the mutual interactions of the individual
units, and without any external forcing.

6.5.1 Frequency Up-Conversion

In this section, we explain the methodology for using a network of coupled nonlinear
oscillators in a systematic way to achieve frequency up-conversion. Without loss of
generality, we will assume the individual oscillators or units to be made up of van
der Pol oscillators [35–38], as is depicted in Fig. 4.26. The approach is, however,
model-independent in the sense that similar results can be obtained with other type
of oscillators, so long as the symmetry requirements are satisfied. We start with a
description of the network configuration, followed by a description of the action of
the group of global symmetries on the oscillators. The action of the group will lead to
the prediction of themulti-frequency patterns. A linear stability analysis is performed
to determine the conditions for symmetry-preserving and symmetry-breaking Hopf
bifurcations that can lead to different patterns of oscillations. It is shown that a
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Fig. 6.9 Schematic diagram
of a coupled cell system
formed by two arrays of van
der Pol oscillators. Each
arrays contains N oscillators,
each coupled to its two
nearest neighbors

traveling-wave pattern along one array and a complete synchronization pattern along
the opposite array provide the necessary conditions for a multi-frequency pattern in
which one array (the in-phase array) oscillates at N times the frequency of the other.
Theoretical predictions are validated by numerical simulations for the special case of
N = 3. A bifurcation analysis shows the stability properties of the ensuing patterns.
Robustness of the muti-frequency pattern to noise effects are demonstrated with
larger networks of up to N = 19 oscillators per array.

6.5.2 Network Configuration

We consider a network of oscillators made up of two arrays of van der Pol oscillators
coupled to one another, as is shown schematically in Fig. 6.9. Each array contains N
identical oscillators, which are each coupled bidirectionally in a ring array to its two
nearest neighbors via diffusive coupling. The internal dynamics of each oscillator
cell is governed by Eq. (5.45), which, written in normal form [39], is

ż = (α + ωi)z − |z|2z, (6.14)

where z ∈ C is now the state variable and α and ω are parameters. Observe that the
Z2-symmetry of the original model Eq. (5.46) is preserved by the normal form. Thus,
Z2 = {I2,−I2} is the group of local symmetries of each cell, where I2 is the 2 × 2
identity matrix. Then a model for the network dynamics can be written as a system
of coupled differential equations of the form:
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˙z1 j = (αx + ωx i)z1 j − |z1 j |2z1 j + cx (z1, j−1 − 2z1 j + z1, j+1) + cyx

N∑
k=1

|z2k |2

˙z2 j = (αy + ωyi)z2 j − |z2 j |2z2 j + cy(z2, j−1 − 2z2 j + z2, j+1) + cxy

N∑
k=1

|z1k |2,
(6.15)

where j = 1, . . . , N mod (N ), x j ∈ C and y j ∈ C describe the state of the j-th
cell of the X and Y arrays respectively, cx and cy represent the coupling strength
within the X - and Y -arrays, respectively; and cxy and cyx describe the cross-coupling
strengths from the X -array to theY -array andvice-versa, respectively.Using cartesian
coordinates, with z1 j = x1 j + x2 j and z2 j = y1 j + y2 j , and letting X j = (x1 j , x2 j )
and Y j = (y1 j , y2 j ), the network Eq. (6.15) can be rewritten as

dX j

dt
= FX (X j ) + CX (X j+1 − 2X j + X j−1) + cyxG(Y )

dY j

dt
= FY (Y j ) + CY (Y j+1 − 2Y j + Y j−1) + cxyG(X),

(6.16)

where

FX (X j ) =
[

αx −ωx

ωx αx

][
x1 j

x2 j

]
− (x21 j + x2 j )2

[
x1 j

x2 j

]
,

CX =
[
cx 0

0 cx

]
, G(Y ) =

⎡
⎢⎣

N∑
k=1

(y21 j + y22 j )

0

⎤
⎥⎦ ,

FY (Y j ) =
[

αy −ωy

ωy αy

][
y1 j

y2 j

]
− (y21 j + y2 j )2

[
y1 j

y2 j

]
,

CY =
[
cy 0

0 cy

]
, G(X) =

⎡
⎢⎣

N∑
k=1

(x21 j + x22 j )

0

⎤
⎥⎦ .

6.5.3 Linear Stability Analysis

Due to the nature of the connections along each array, the underlying group of global
symmetries of each array isDN , i.e., the group of symmetries of an N -gon. It follows
that

Γ = DN × DN ,

is the group of global symmetries of the network, including the two interconnected
arrays. To study the effects of the Γ -symmetry on the network, we represent the state
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of the X -array as
X (t) = (X1(t), . . . , XN (t)),

and the Y -array as
Y (t) = (Y1(t), . . . ,YN (t)).

We now conduct a study of the linearization of the network model Eq. (6.16) near
the origin, (X,Y ) = (0, 0), which is given by

L = diag(LX , LY ), (6.17)

where

LX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

JX CX 0 0 . . . 0 CX

CX JX CX 0 . . . 0 0

0 CX JX CX 0 . . . 0

...
...

...
. . .

. . .
. . .

...

0 0 . . . 0 CX JX CX

CX 0 0 . . . 0 CX JX

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with JX = (dFX )(0,0) − 2CX , and

LY =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

JY CY 0 0 . . . 0 CY

CY JY CY 0 . . . 0 0

0 CY JY CY 0 . . . 0

...
...

...
. . .

. . .
. . .

...

0 0 . . . 0 CY JY CY

CY 0 0 . . . 0 CY JY

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with JY = (dFY )(0,0) − 2CY .
We complexify from R

8N to C8N and employ the well-known isotypic decompo-
sition of C8N by DN × DN , which is given by

C8N = V0 ⊕ V0 ⊕ V1 ⊕ V1 ⊕ · · · ⊕ VN−1 ⊕ VN−1,

where
Vj = C{v j } with v j = (v, ζ jv, ζ2 jv, . . . , ζ(N−1) jv)T ,

j = 0, . . . , N − 1, and ζ = exp (2πi/N ), for some v ∈ R
2. Observe that each iso-

typic subspace is repeated twice, one time for the X -array and one time for the
Y -array. Using coordinates along the isotypic components, we find the eigenvalues
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of the linearization of Eq. (6.16) to be those of

LX j = (dFX )(0,0) − 2CX + (ζ j + ζ(N−1) j )CX

= (dFX )(0,0) − 2CX + (ζ j + ζ
j
)CX

= (dFX )(0,0) − 2CX + 2 cos(2π j/N )CX ,

and (through similar calculations) those of

LY j =(dFY )(0,0) − 2CY + 2 cos(2π j/N )CY .

For the special case of N = 3, the spectrum of eigenvalues are those of

LX = diag(JX + 2CX , JX − CX , JX − CX )

LY = diag(JY + 2CY , JY − CY , JY − CY ),

which are the eigenvalues of the blocks

(dFX )(0,0), (dFX )(0,0) − 3CX , (twice)

(dFY )(0,0), (dFY )(0,0) − 3CY , (twice).

Observe that these blocks are the same as those found in the linearization of
the three-cell system that we studied earlier in Example 6.2. Thus, we can leverage
the previous work and conclude that the patterns of oscillations that each array can
support are the same as those described in Example 6.2. More specifically, each array
can produce in-phase oscillations viaD3 symmetry-preserving bifurcations and three
other types of collective patterns with isotropy subgroups, Σ , given by: Z̃3, Z2(κ),
and Z2(κ,π). These latter patterns emerge via D3 symmetry-breaking bifurcations.

We would like to emphasize that this approach allows us to predict the emergence
of certain patterns of oscillations, whose spatio-temporal symmetries are described
by their respective isotropy subgroups. The approach does not provide, however,
a direct link to determining whether the bifurcations that lead to each pattern are
super- or subcritical. Also, it does not lead to an identification of which branches (if
any) are stable. In fact, in order to determine the criticality of the bifurcations and
which branches are stable, one alternative is to perform, either, a Lypunov Schmidt
reduction or Center Manifold reduction of the network dynamics into the relevant
eigenspaces. These tasks are beyond the scope of the present book. We refer the
reader to related works [40], which provide alternative derivations of criticality and
stability properties.
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6.5.4 The Role of Spatio-Temporal Symmetries

A critical observation is the fact that certain spatio-temporal symmetries, encoded
in the isotropy subgroups, may lead to spatio-temporal patterns in which one of the
arrays oscillates N times faster than the other [15, 16]. To verify this assertion, con-
sider a spatio-temporal pattern, P(t), generated by the network, andwhose evolution,
at any given time, t , can be described by

P(t) = (X (t),Y (t)).

Let us assume that this pattern, P(t), is a periodic solution of period T with
the following characteristics. On one side of the network, for instance, the X -array,
undergoes a symmetry-breaking Hopf bifurcation that leads to a pattern of oscilla-
tions with isotropy subgroup Z̃N . That is, the oscillators form a traveling wave (TW),
i.e., same wave form X0 shifted (delayed) by a constant time lag φ = T/N :

Xk(t) = X0(t + (k − 1)φ), k = 1, . . . , N .

On the opposite side, the Y -array undergoes a symmetry-preserving Hopf bifur-
cation that leads to a pattern of oscillations with isotropy subgroup DN . Thus, the
oscillators are assumed to be in-phase (IP) with identical wave form Y0, i.e., a syn-
chronous state:

Yk(t) = Y0(t), k = 1, . . . , N .

Together, Z̃N × DN × S1 act on P(t) as follows. First, Z̃N cyclically permutes the
oscillators of the X -array, while DN acts trivially on the oscillators of the Y -array:

Z̃N · XTW (t) = {XN (t + (N − 1)φ), X1(t), . . . , XN−1(t + (N − 2)φ)},
DN · YI P(t) = {Y1(t),Y2(t), . . . ,YN (t)}.

Then S1 shifts time by φ so that

Z̃N × S1 · XTW (t) = {XN (t), X1(t + φ), . . . , XN−1(t + (N − 1)φ)},
DN × S1 · YI P(t) = {YN (t + φ),Y1(t + φ), . . . ,YN−1(t + φ)}.

Since the oscillators are identical, we get

Z̃N × S1 · XTW (t) = XTW (t),

DN × S1 · YI P(t) = YI P(t + φ).
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It follows that in order for YI P(t) to haveDN × S1 symmetry, the in-phase oscilla-
tors must oscillate at N times the frequency of the oscillations of the traveling wave.
The same conclusion is reached if the roles of the X and Y arrays are interchanged.

Suppose that we change the coupling topology of the network to have the indi-
vidual arrays unidirectionally coupled. Then,

Γ = ZN × ZN ,

becomes now the group of global symmetries of the network. Traveling wave solu-
tions, can also arise in ZN symmetric systems through ZN symmetry-breaking Hopf
bifurcation [15]. Likewise,ZN symmetry-preserving Hopf bifurcations can also lead
to synchronized oscillations. This means that a network withΓ = ZN × ZN symme-
try can support a spatio-temporal pattern with isotropy subgroup Σ = Z̃N × ZN ×
S1. Then, a similar set of calculations (not shown for brevity) will lead to the con-
clusion that

Z̃N × S1 · XTW (t) = XTW (t),

ZN × S1 · YI P(t) = YI P(t + φ).

Consequently, a network with ZN × ZN -symmetry, i.e., unidirectionally coupled
arrays, can also produce the same multi-frequency effect in which the in-phase oscil-
lators are induced to oscillate at N times the frequency of the traveling-wave oscil-
lators. This conclusion serves to highlight the model-independent features of the
symmetry-based approach, in which the results and conclusions depend, mainly, on
the underlying symmetries of the system as opposed to the internal characteristics
of each individual oscillator.

We remark that this approach to manipulate the frequency of oscillations is sig-
nificantly different from that of sub-harmonic and ultra-harmonic motion generated
via a forced system as is described by Hale and Gambill [41] and later by Tiwari
and Subramanian [42]. In our case, the multifrequency behavior arises from the
mutual interaction of two arrays of oscillators. None of the oscillators is forced and,
consequently, the arrays are naturally modeled by an autonomous system instead
of the non-autonomous system that is described in the same references [41, 42].
Furthermore, observe that the approach is applicable to arrays of arbitrary size, N .

6.5.5 Numerical Simulations

We now provide evidence of the existence of a multifrequency pattern, such as the
one described above, in which the Y -array oscillates at N times the frequency of
the oscillators in the X -array, through numerical simulations. Results with larger N
are also provided later on. Figure 6.10 shows the results of integrating the model
Eq. (6.15) for the particular case of N = 3 oscillators per array.
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Fig. 6.10 Multifrequencyoscillations found in simulations of network equations (6.15)with N = 3.
(Left) The X -array generates a traveling wave pattern, while the (right) Y -array yields an in-phase
pattern that oscillates at three times the frequency of the travelingwave. The bottompanels depict the
corresponding power spectral density (PSD) where it can be checked that the in-phase pattern has a
frequency three times greater than the traveling wave pattern (0.22798 ≈ 3 × 0.07599). Parameters
are: αx = αy = 1.0, ωx = ωy = 0.5, cx = −0.4, cy = 0.4, and cxy = cyx = 0.12

Coupling parameters within each array are: cx = −0.4, for the X -array, and
cy = 0.4 for the Y -array. Coupling parameters across the arrays are: (cxy, cyx ) =
(0.12, 0.12). Under these conditions, a stable traveling wave pattern emerges via
a D3 symmetry-Hopf bifurcation along the X array, with period, approximately
T ≈ 13.272 sec (frequency ≈ 0.0753 Hz). The traveling wave pattern has spatio-
temporal symmetry described by the isotropy subgroup ΣX = Z̃3 × S1. Similarly, a
D3 symmetry-preserving Hopf bifurcation leads to synchronized oscillations along
the Y -array. The isotropy subgroup of the synchronized pattern is the entire group,
i.e., ΣY = D3 × S1. It follows that the spatio-temporal pattern, TW-IP, is described
by the isotropy subgroup Σ = Z̃3 × D3 × S1.

As predicted by theory, the Z̃3 × D3 × S1-symmetry leads to a collective pattern
in which the in-phase oscillations of the Y -array are three times faster (see power
spectra densities in lower panels) than the traveling wave produced by the X -array.

A generalization of the existence of similar multifrequency patterns in larger
arrays depends upon network connections that can satisfy the necessary conditions
for the network to exhibit a traveling wave pattern in one array and a synchronized
solution in the opposite array. The network configuration shown in Fig. 6.9 with
N odd, in particular, shows similar multifrequency results. We have tested (through
computer simulations) this network and a network withZN × ZN -symmetry, with up
to N = 19 oscillators, and they both can produced the desired patterns of oscillations,
including the multi-frequency effects. When N s even, however, other coupling
schemes need to be considered so that the network, and the solutions generated
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Fig. 6.11 Generalized
network configuration of M
arrays of coupled cell units.
Each array contains N
elements

by the connectivity, can meet the necessary conditions for symmetry-breaking and
symmetry-preserving Hopf bifurcations to occur.

6.5.6 Frequency Down-Conversion

In this section we show how a high frequency signal can be down-converted by pass-
ing it through a cascade of arrays of unidirectionally coupled overdamped bistable
elements. As an example, we find that the frequency down-conversion can be by a
factor of 1/2, 1/5, or 1/11 for two coupled arrays of three elements, N = 3, M = 2,
where N is the size of each array and M is number of interconnected arrays. A gen-
eralization to larger M is also provided. We use analyses tools that emphasize the
symmetry of the networks to help us better understand the organization and stability
properties of the ensuing behavior while providing the means for determining both
invariance and changes in the system without going deep into the analysis of its
dynamics. We note that the robustness of a given network guarantees that certain
patterns of oscillation persist regardless of the internal dynamics of each individual
nonlinear element.

6.5.7 Network Configurations and Symmetries

We start with a special case of the more general setup of cascade arrays depicted in
Fig. 6.11.

For the special case of two arrays, the network dynamics is described by the
following set of differential equations:
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ẋi = f (xi ,α) +
∑
j→i

λi j h(xi , x j )

ẏi = f (yi ,α) +
∑
j→i

λi j h(yi , y j ) + ci j k(yi , x j ),
(6.18)

where yi = (yi1, . . . , yik) ∈ Rk denote the state variables of cell i in the second array,
k is an inter-array coupling function, ci j being the corresponding coupling strength.
Notice the unidirectional coupling in each array and also between adjacent cells in
the two arrays. The opposite directions of the intra-array couplings should also be
noted. The unidirectional inter-array coupling yields a networkwith global symmetry
described by the direct product group

Γ = ZN × ZN ,

in which ZN is the group of cyclic permutations of N objects. Each element of the
direct product group permutes, simultaneously, each element of the corresponding
arrays. For the moment, there is no externally applied signal.

To study the patterns of behavior for the M = 2 case of the network in Fig. 6.11,
we use

X1(t) ≡ X (t) = (x1(t), . . . , xN (t))

to represent the state of one array and

X2(t) ≡ Y (t) = (y1(t), . . . , yN (t))

to denote the state of the second array. Thus, at any given time t , a spatio-temporal
pattern generated by the network can be described by

P(t) = (X (t),Y (t)).

To begin the analysis, let us assume that both arrays exhibit a traveling wave
(TW) pattern with period T , and isotropy subgroup ΣX = ΣY = Z̃3. That is, the
waveforms produced by each array are identical, but out-of-phase by a constant time
lag φ = T/N . We also make a second assumption that the X2 array oscillates at m
times the period of the X1 array, where m is a nonzero integer. Thus, P(t) has the
form

P(t) = (x(t), x(t + (N − 1)φ), . . . , x(t + φ),

y(t), y(t + mφ), . . . , y(t + (N − 1)mφ)),
(6.19)

where the X1 array exhibits a TW in the opposite direction of the X2 array, a direct
result of the opposite orientation of their coupling schemes. For simplicity, we further
assume that N = 3, and that the units are coupled as is shown in Fig. 6.11. From
Eqs. (6.19), a solution to this network has the form
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P(t) =
(
x(t), x(t + 2T

3
), x(t + T

3
), y(t), y(t + mT

3
), y(t + 2mT

3
)

)
. (6.20)

Under the previous assumptions, the pattern P(t) has spatio-temporal symme-
try described by the cyclic group Z̃3 × Z̃3 and by the group S1 of temporal shifts.
Together,Σ = Z̃3 × Z̃3 × S1 acts on P(t) as follows. First,Σ acts as a permutation:

Σ · (1, 2, 3, 1′, 2′, 3′) → (3, 1, 2, 3′, 2′, 1′),

so that

Σ · P(t) =
(
x(t + T

3
), x(t), x(t + 2T

3
), y(t + 2mT

3
), y(t), y(t + mT

3
)

)
.

(6.21)
Then S1 shifts time by mT/3 so that

(
Σ, mT

3

) · P(t) =
(
x(t + m+1

3 T ), x(t + m
3 T ), x(t + m+2

3 T ),

y(t + mT ), y(t + m
3 T ), y(t + 2m

3 T )

)
.

(6.22)

Since the cells are assumed to be identical, it follows that Σ = Z̃3 × Z̃3 × S1 is
a spatio-temporal symmetry of the network provided that

X (t) = X (t + m + 1

3
T ) and Y (t) = Y (t + mT ).

But X1 is T -periodic, which implies that m = 3k − 1, where k is a nonzero
integer. As k increases (starting at one) we obtain the following values for m :
2, 5, 8, 11, 14, 17, 20, 23, . . .. When m = 2, for instance, the X2-array oscillates at
1/2 the frequency of the X1-array. Likewise,m = 5 suggests that the X2-array oscil-
lates at 1/5 the frequency of the X1-array. The case whenm = 8 should be excluded,
however, since m = 8 = 22 × 2.

As N increases, similar frequency down-conversion ratios emerge. A bifurcation
analysis shows that the regions of existence of these frequency ratios form an Arnold
tongue structure in parameter space (λ2, cxy). In general we find (noting that N is
odd) ωX1/ωX2 = N − 1, 2N − 1...Nk − 1. Table 6.1 summarizes the downconver-
sion ratios.

6.5.8 Simulations

Toverify the existence of these oscillations,wedefine the individual dynamics of each
cell to be that of a prototypical bistable system, an overdamped Duffing oscillator
with internal dynamics given by
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Table 6.1 Down-conversion ratios between the frequency of the X array, ωX , and Y array, ωY , for
a network of two coupled arrays interconnected as is shown in Fig. 6.11. k is a positive integer

Number of cells ωX/ωY

3 2 5 · · · 3k-1

5 4 9 · · · 5k-1

7 6 13 · · · 7k-1

9 8 17 · · · 9k-1
.
.
.

.

.

.
.
.
.

. . .
.
.
.

N N-1 2N-1 · · · Nk-1

f (x) = ax − bx3,

and the (unidirectional) intra-array coupling functions by

h(xi , xi+1) = xi − xi+1 and h(yi , yi−1) = yi − yi−1,

respectively. The inter-array connections are unidirectional, as is shown in Fig. 6.11,
hence, the X1-array dynamics has no dependence on the X2-array dynamics. Then,
the network dynamics are represented by the system

τ ẋi = axi − bx3i + λ1(xi − xi+1)

τ ẏi = ayi − by3i + λ2(yi − yi−1) + cxyxi ,
(6.23)

where i = 1, . . . , N mod N , a and b are positive constants that describe the dynamics
of the individual cells, λ1, and λ2 define the intra-array coupling strengths for the
X1 and X2 arrays, respectively, with cxy the inter-array coupling coefficient. τ is a
system time constant.

First assume that there is no cross coupling, i.e. cxy = 0. Then [43], λ1c = a/2 is
the critical coupling strength beyond which the X1 elements oscillate. Accordingly,
if the coupling strength of the X2 array is below the critical coupling strength, i.e.
λ2 < λc, and the coupling strength of the X1 array is above, λ1 > λc, then we would
obtain the pattern shown in the left panel of Fig. 6.12 for the X1 elements, but the
X2 array would be quiescent.

Increasing the cross-coupling strength cxy > 0 induces the X2-array to oscillate
(above a critical value of cxy) with frequency ωX2 = ωX1/5; this is shown in the
right panel of Fig. 6.12. Increasing further the cross coupling cxy causes the X2

array to oscillate at 1/2 the frequency of the X1-array. Additional frequency down-
conversion ratios, (1/2, 1/5, 1/(3k − 1), where k = 1, 2, 3, . . ., are also observed as
the cross-coupling, cxy , increases further.
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Fig. 6.12 Numerical simulations showing the frequency down-conversion effect. Each element
in the X2-array oscillates at 1/5 the frequency of each element in the X1-array (0.001186Hz ≈
1
5 0.00593Hz). Parameters are: cxy = 0.14, λ1 = 0.51, λ2 = 0.3, a = 1, b = 1, and τ = 1

Experiments on frequency up- and down-conversion have been conducted to val-
idate theory. Those works are beyond the scope of the present book but readers
interested in more details can find additional information in [31, 33].

6.6 Feedforward Networks

Feedforward networks are a specific type of network characterized by a homogeneous
chain of unidirectionally coupled nodes, as is shown in Fig. 6.13. The first node may
or may not be self-coupled.

The unidirectional coupling prevents feedback in the system, so that one system
may influence another without being itself affected. Observe that the cascade array

Fig. 6.13 Representative example of a three-cell feedforward network. Arrows indicate coupling,
with coupling strength λ. Each cell represents a dynamical system assumed to be operating near a
Hopf bifurcation
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that was used for frequency-downconversion, see Fig. 6.11, can be thought of as an
extension of a feedforward network. We show now that under the right conditions,
the feedforward network causes certain bifurcations to exhibit accelerated growth
rates.

6.6.1 Hopf Bifurcation

Consider, for example, the three-cell feedforward network shown in Fig. 6.13.
Assume the internal dynamics of each cell to be governed by a Hopf bifurcation,
which in normal form [44–46], it takes the form

ż = (μ + ωi) z − (1 + γi)|z|2z. (6.24)

For μ > 0, the origin loses stability and tends to oscillate at frequency ω with
some positive amplitude. For μ < 0, the origin is a stable equilibrium and the cell
will tend to zero. Equation (6.24) is the normal form of a Hopf bifurcation, and
therefore this is the simplest possible system which displays a Hopf bifurcation. The
network is then modeled by the following system of equations

ż1 = (μ + iω) z1 − (1 + i γ) |z1|2 z1 − λz1

ż2 = (μ + iω) z2 − (1 + i γ) |z2|2 z2 − λz1

ż3 = (μ + iω) z3 − (1 + i γ) |z3|2 z3 − λz2.

(6.25)

The authors in [46–48] have found that coupling causes the amplitudes of oscilla-
tion that arise from the onset of the Hopf bifurcation to grow at a larger rate. Ifμ is the
bifurcation parameter, and μ = 0 is the onset of a supercritical Hopf bifurcation, then
the third cell undergoes oscillations of amplitude approximately equal to μ1/6, rather
than the expected amplitude of μ1/2. This phenomenon showcases an accelerated
growth rate that has the potential for the design and fabrication of advanced filters in
signal processing [49, 50]). An example of a time series, obtained from simulations
of Eq. (6.25), which exhibits this growth phenomenon is shown in Fig. 6.14.

As the feedforward network grows in size, the authors report that the growth rate
of oscillations in the final cell are determined by taking successive cube roots [49].
Thus, in a five-cell feedforward network, the growth rate should be proportional to
the 54th root of the bifurcation parameter, which has also been proved in [51].

This phenomenon of such large-amplitude oscillations in the third cell can be
understood as a type of nonlinear resonance as well as being the result of the com-
bination of the unidirectional coupling and the higher-degree nonlinearities [52].
Due to the network topology of the feedforward network, the third (or last) oscil-
lator is being periodically forced by the previous one. This line of inquiry led to
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Fig. 6.14 Amplitude of
oscillations produced by the
onset of a Hopf bifurcations
in the feedforward network
shown in Fig. 6.13.
Parameters are: μ = (1/2)6,
ω = 1, γ = 0, λ = 1.
Observe the signal
amplification effect on the
third cell

investigations of periodically forced Hopf bifurcations, and even periodically forced
feedforward networks of Hopf bifurcations [46, 49, 53]. Related articles, proving
anomalous growth rates can occur for equilibria in (unusual) regular networks, for
bifurcations at simple eigenvalues are in [54, 55].

6.6.2 Analysis

Consider the case when γ = 0. The model Eq. (6.25) becomes

ẋ = (μ + iω) x − |x |2 x − λx

ẏ = (μ + iω) y − |y|2 y − λx

ż = (μ + iω) z − |z|2 z − λy,

(6.26)

where ω is the rotational velocity in the complex plane and μ is the bifurcation
parameter. Note that we can rewrite the first equation in (6.26) as

ẋ = (μ̃ + iω) x − |x |2 x,

where μ̃ = μ − λ. Then the bifurcation parameter in the first cell is different than
the bifurcation parameters of the second and third cells. We will use this fact later
on in the analysis. We introduce the two time scales ξ = ωt and η = εt . Applying
the chain rule we can conclude that

d

dt
= ω

∂

∂ξ
+ ε

∂

∂η
. (6.27)
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We assume that each solution can be expressed as a Taylor series expansion of
the form:

x(ξ, η) = x0(ξ, η) + εx1(ξ, η) + ε2x2(ξ, η) + · · ·
y(ξ, η) = y0(ξ, η) + εy1(ξ, η) + ε2y2(ξ, η) + · · ·
z(ξ, η) = z0(ξ, η) + εz1(ξ, η) + ε2z2(ξ, η) + · · ·

(6.28)

We suppress the nonlinearities, exponential growths, and couplings in (6.26) with
ε. This gives us

ẋ = (εμ + iω) x − ε |x |2 x − ελx

ẏ = (εμ + iω) y − ε |y|2 y − ελx

ż = (εμ + iω) z − ε |z|2 z − ελy.

(6.29)

Substituting (6.27) and (6.28) into (6.29) and collecting like powers of ε, we get
the terms of order ε0:

∂x0
∂ξ

= i x0,
∂y0
∂ξ

= iy0,
∂z0
∂ξ

= i z0, (6.30)

with solutions
x0 (ξ, η) = A(η) exp (i φ1(η)) exp (iξ)

y0 (ξ, η) = B(η) exp (i φ2(η)) exp (iξ)

z0 (ξ, η) = C(η) exp (i φ3(η)) exp (iξ) ,

(6.31)

respectively. This essentially serves to express an approximation to x , y, and z in
polar coordinates. From now on, we will implicitly assume the dependence of A, B,
C , and φi on η. For equations of order ε, we get

ω
∂x1
∂ξ

= iωx1 − ∂x0
∂η

+ μx0 − |x0|2 x0 − λx0

ω
∂y1
∂ξ

= iωy1 − ∂y0
∂η

+ μy0 − |y0|2 y0 − λx0

ω
∂z1
∂ξ

= iωz1 − ∂z0
∂η

+ μz0 − |z0|2 z0 − λy0.

(6.32)

We can see that to eliminate secular terms, we must set the sum of all the terms
involving xi,0 or its derivatives equal to zero. Thus we get the set of equations

∂x0
∂η

= μx0 − |x0|2 x0 − λx0

∂y0
∂η

= μy0 − |y0|2 y0 − λx0

∂z0
∂η

= μz0 − |z0|2 z0 − λy0.

(6.33)
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By substituting (6.31) into (6.33), and subsequently dividing throughbyexp(i (ξ +
φi )), we get

A′ + i Aφ′
1 = μA − A3 − λA

B ′ + i Bφ′
2 = μB − B3 − λA exp (i(φ1 − φ2))

C ′ + iCφ′
3 = μC − C3 − λB exp (i(φ2 − φ3)).

(6.34)

Now let us separate (6.34) into its real and imaginary parts, and introduce the
variablesψ1 = φ1 − φ2 andψ2 = φ2 − φ3.Noting that the first equation of Eq. (6.34)
implies that φ′

1 = 0, we rewrite (6.34) as

A′ = μA − A3 − λA

B ′ = μB − B3 − λA cos (ψ1)

C ′ = μC − C3 − λB cos (ψ2)

ψ′
1 = λA

B
sin (ψ1)

ψ′
2 = λB

C
sin (ψ2) − λA

B
sin (ψ1) .

(6.35)

Here we have implicitly assumed that B,C �= 0. The Jacobian of this system of
equations is difficult to analyze, and its eigenvalues even more so. Let us then make
an observation about the equations forψ′

1 andψ′
2. These have fixed points, regardless

of the values of A and B, only when ψ1 = n1π and ψ2 = n2π for ni ∈ Z. It follows
then that to obtain a fixed point, we must have cos(ψ1) = ±1 and cos(ψ2) = ±1.
Making this substitution yields the following system:

A′ = μ̃ A − A3

B ′ = μ B − B3 ± λA

C ′ = μC − C3 ± λB.

(6.36)

Now let us note that the Jacobian J of this simplified system is a triangular matrix,
with the property that the added uncertain plus or minus signs do not appear in the
diagonal entries; i.e., these do not influence the eigenvalues, and by extension, the
stability properties of any fixed points.

J =
⎛
⎝

μ̃ − 3 A2 0 0
±λ μ − 3 B2 0
0 ±λ μ − 3C2

⎞
⎠ . (6.37)

Since A, B, and C represent the amplitudes of oscillation in each cell, it will
suffice to study the values of |A|, |B|, and |C |, respectively. This does not influence
the stability—note that the powers of A, B, and C that appear in the eigenvalues are
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Table 6.2 Fixed point solutions of System (6.36) and their associated stability properties

|A| |B| |C | Eigenvalues Stability

0 0 0 μ̃ μ μ Saddle

0 0
√

μ μ̃ μ −2μ Saddle

0
√

μ φ(μ) ∼ λ1/3μ1/6 μ̃ −2μ μ −
3φ2(μ)

Stable

Fig. 6.15 Bifurcation
diagrams for Eq. (6.26)
showing the close match
between the predicted (solid
lines) amplitudes and the
exact amplitudes extracted
from the numerical
simulations (circles). The
bifurcation parameter μ
varies in the interval
0 < μ < λ

even. A negative amplitude on the oscillation corresponds to shifting the phase by π.
Table 6.2 summarizes the stability properties of the amplitudes of A, B, and C for
0 < μ < λ.

We can now substitute the solutions for A, B and C into Eq. (6.31) to get an order
ε0 approximation. Once the secular terms have been eliminated, Eq. (6.32) becomes

∂x1
∂ξ

= i x1,
∂y1
∂ξ

= iy1,
∂z1
∂ξ

= i z1, (6.38)

which can be readily solved directly to yield x1 = x10eiξ , y1 = y10eiξ , and z1 =
z10eiξ , where x10, y10, and z10 represent arbitrary initial conditions. These are order
ε solutions. Together, order ε0 and order ε solutions are ensembled into Eq. (6.28)
to yield analytical approximations to the solutions for the three-cell feedforward
network, up to order ε. Figure 6.15 shows a computational bifurcation diagram of
the originalmodel Eq. (6.26). Circles represent the branches of bifurcations produced
numerically. The analytical approximations predicted by the asymptotic analysis are
shown in solid lines. The diagrams show that a good approximation between the
exact solutions and the predicted asymptotic ones for the restricted parameter range
0 < μ < λ.
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Fig. 6.16 An array of
nonlinear oscillators drive
individual radiation elements
to form a radiation beam
pattern

6.7 Beam Steering

Beamsteering is aboutmanipulating the direction of a radiating far-field intensity pat-
tern. Applications usually include: optics, acoustics, and, antenna and radar systems.
In antennas and radar systems, for instance, beam steering can be achieved either
by switching the antenna elements or by controlling the phase differences between
oscillating components,which typically consist of arrays of nonlinear oscillators. The
oscillators are usually arranged in an array, as is shown, schematically, in Fig. 6.16.

Common point sources for beam steering in active antennas and radar systems
consist of multiple nonlinear oscillators, e.g., van der Pol oscillators, each driving
a separate radiation patch element. This lead to a mathematical model, which using
the coupled cell formalism, can be expressed as

dz j
dt

= f j (z j ,μ) + κeiΦ(z j+1 − 2z j − z j−1) + fe(t), (6.39)

where f is the internal dynamics of each van der Pol oscillator, written in normal
form:

f j (z j ,μ) = (α + w j i)z j − |z j |2z j ,

where z j is a complex-valued state variable for each oscillator j , with j = 1, . . . , N ,
with boundary conditions z0 = zN+1 = 0,α is themain excitation bifurcation param-
eter, which determines the amplitude of the ensuing oscillations, ωi is related to the
natural frequency of each oscillator, κ is the coupling strength among nearest neigh-
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Fig. 6.17 Reconfigurable antenna made up of thousands of van der Pol circuits coupled in a chain.
Small frequency perturbations of the end-points of the chain allows for beam shaping and steering
without the need to mechanically rotate the antenna device

bors, Φ is a coupling phase parameter, and fe(t) is an external incoming signal,
usually of the form

fe(t) = a(t)ei(Ωt+ϕ),

where a(t) is a complex amplitude factor that allows for slow changes (relative to
the oscillating period) in the magnitude or phase, ϕ, of the incoming signal, with
frequency Ω . Equation (6.39) serves as a model for a reconfigurable antenna [56],
see Fig. 6.17.

Indeed, Fig. 6.17 illustrates that while applying a small perturbation to the end-
points of the chain of oscillators, the beam can be shaped and steered [39] without
the need to mechanically rotate the antenna device. Let us explore in more detail
how this can be done.

6.7.1 Array Factor

It has been shown [39] that the far-field intensity pattern of an antenna or radar sys-
tem consists of alternating light and dark bands, also known as interference fringes.
These interference fringes arise from the phase differences incurred by the different
path lengths between the sources. When a constant phase shift between neighboring
sources is introduced, then the positions of the interference fringes, and, conse-
quently, the radiating pattern, will change. Thus, controlling the phase shift between
nonlinear oscillators is of critical importance for achieving beam steering. Common
methods for controlling the phase differences of the nonlinear oscillators include:
phase shifters [57], injection current [58, 59], and frequency de-tuning [60, 61].
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The radiation produced by each patch element has both an (assumed to be identi-
cal) amplitude, E0, and a phase, ξ j = �k · �r j , where �k is the free-space wave vector,
and �r j is the position vector from the j th radiation element to some observation point
P . When N of these signals interact with one another, they can collectively produce
a total radiation field pattern. When P is far away from the array, the total radiating
electric field is

E(P) = 1

N

N−1∑
j=0

E0e
iξ j = 1

N

N−1∑
j=0

E0e
i �k·�r j . (6.40)

Figure 6.16 shows that for points in the far-field, i.e., for distances from the
elements much grater than the array size, (N − 1)d, the wave vector and the position
vector are, approximately, parallel, so that �k · �r j ≈ kr j . Equation (6.40) can then be
re-written as

E(P) =
⎛
⎝ 1

N

N−1∑
j=0

eik(r j−r0)

⎞
⎠ E0e

ikr0 . (6.41)

Since r j − r0 = jd sinϕ, where ϕ is the angle of incidence or transmission of the
radiation wave, we can, once again, re-write Eq. (6.41) as

E(P) =
⎛
⎝ 1

N

N−1∑
j=0

ei jkd sinϕ

⎞
⎠ E0e

ikr0 . (6.42)

Equation (6.42) is also known as the array pattern multiplication property. It
indicates that the total radiation pattern of an antenna array is the product of the
electric field produced by a single patch element, E0eikr0 , multiplied by an Array
Factor, A(Ψ ), which is the term in parenthesis written as

A(Ψ ) = 1

N

N−1∑
j=0

ei jΨ , (6.43)

whereΨ = kd sinϕ.Direct calculations show that the array factor givenbyEq. (6.43)
can also be expressed as

A(Ψ ) =
sin

(
NΨ

2

)

N sin

(
Ψ

2

)ei(N−1)Ψ/2. (6.44)

Figure 6.18 shows the array factor for an array antenna with N = 8 elements,
plotted in rectangular and polar coordinates. Observe that |A(Ψ )| is symmetric with
respect to Ψ = 0, and it always attains a maximum at Ψ = 0, which corresponds to
an angle of incidence of ϕ = 0. This angle is also known as the broadside direction
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Fig. 6.18 Array factor for an array antenna with N = 8 identical elements, plotted in (top) rectan-
gular coordinates and (bottom) polar coordinates

as it is normal to the plane of the array. Notice also that the width of the main lobe
decreases as N increases.

Consider now the model Eq. (6.39). When fe(t) = 0, the antenna operates in
transmission mode, while when fe(t) �= 0 then the antenna functions as a receiver.
In the former case, the emphasis is on the radiating patterns that emanate from the
sources. The latter case concerns the response of the nonlinear beamformer to incident
signals and noise. In both cases, transmission and receiving, one seeks solutions to
the model Eq. (6.39) with a spatially uniform phase gradient across the array, i.e., in
the form

z j (t) = A je
iφ j (t). (6.45)

Previous calculations of the total radiating electric field assume the radiating
source elements to be in-phase. Let us assume now a uniform phase gradient, intro-
duced by the individual phase of the oscillators, across the array, such that

ξ j = kr j + φ j .

Substituting ξ j into Eq. (6.40), while assuming a constant phase difference among
neighboring oscillators, i.e., φ j+1 − φ j = θ, so that φ j − φ1 = jθ, then a similar set
of calculations yield

E(P) =
⎛
⎝ 1

N

N−1∑
j=0

ei j (kd sinϕ+θ)

⎞
⎠ E0e

i(kr0+φ1). (6.46)

It follows that the array factor becomes

A(Ψ + θ) =
sin

(
N (Ψ + θ)

2

)

N sin

(
Ψ + θ

2

) ei(N−1)(Ψ +θ)/2. (6.47)
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Fig. 6.19 Array factor for an array antenna with N = 8 identical elements, steered by an angle of
-600, plotted in (top) rectangular coordinates and (bottom) polar coordinates

Consequently, the constant phase difference among the oscillators leads to a shift
or steering of the beam pattern, from the angleΨ toΨ + θ. Figure 6.19 illustrates the
effect of steering the beam pattern shown in Fig. 6.18 by a constant phase difference
of θ = −600.

Now, assume the phase of each individual oscillator to be defined as

φ j = ωt + ( j − 1)θ.

Substituting the desired solution (6.45), i.e., z j (t) = A jeiωt+( j−1)θ into the model
Eq. (6.39), and assuming identical amplitudes of oscillations, where, E0 = A j , yields
the following conditions on the natural frequencies:

ω1 = ω + κ sin(θ + Φ)

ω j = ω + ( j − 1)θ̇

ωN = ω + (N − 1)θ̇ − κ sin(θ + Φ).

(6.48)

In the static approach to beam steering, phase differences must be controlled
so that the array produces a stationary far-field pattern at a fixed location. This case
implies that θ̇ = 0. It follows that the natural frequencies of only the twoend elements,
ω1 andωN , need to bemanipulated. By contrast, in the dynamic approach, one seeks a
far-field intensity pattern that moves continuously. In this case, θ̇ �= 0, which implies
that to achieve a continuously scanning beam then the natural frequency of every
individual oscillator must be adjusted in a time-dependent manner [60, 62, 63].

In addition, we could re-arrange the oscillators into a cascade network, so we can
exploit the symmetry of the interconnected oscillators to manipulate the collective
frequency of oscillation over a broad range of frequencies. These two schemes, beam
steering andmulti-frequency oscillations, can lead to amulti-purpose antenna device.
Next, we explore the idea of using a feedforward network to achieve, in addition to
beam steering, signal amplification.
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Fig. 6.20 Common point
sources for beam steering in
active antennas and radar
systems consist of multiple
nonlinear oscillators, e.g.,
van der Pol oscillators, each
driving a separate radiation
patch element. The
oscillators in this array are
coupled in a feedforward
configuration

6.7.2 Signal Amplification

Figure 6.20 illustrates the concept of an array of nonlinear van der Pol oscillators
connected in a feedforward fashion. The first oscillator (cell) is coupled to itself, and
each successive oscillator is coupled to the next one.

When the first oscillator in the feedforward network shown in Fig. 6.20 is coupled
to itself, the model equations, written in normal form, can be expressed as follows.

ż1 = (α + ω1i) z1 − |z1|2z1 − κeiΦ z1 + Feiωt ,

ż j = (
α + ω j i

)
z j − |z j |2z j − κeiΦ z j−1 + Fei(ωt+( j−1)Δϕ),

(6.49)

where j = 1, . . . , N , α is the main excitation bifurcation parameter, which deter-
mines the amplitude of the ensuing oscillations, κ is the coupling strength, Φ is a
coupling phase parameter, fe(t) = Fei(ωt+Δϕ) is the external incoming signal with
constant amplitude F , frequency ω, and Δϕ is a constant phase difference intro-
duced by the directionality of the signal. Without self coupling on the first cell, the
term κeiΦ z1 can be removed. We showed above that in the transmission problem,
where the external signal is absent, both type of arrays, with and without self cou-
pling, phase-locking and synchronization exist and, under certain conditions, they are
locally asymptotically stable solutions of the array. Furthermore, the third cell, and
subsequent cells, oscillate (via a Hopf bifurcation) with a larger growth of α1/6, as
opposed to the standardα1/2, which is characteristic ofHopf bifurcations. Figure 6.21
shows that the signal amplification persists under the presence of a small incident
signal of amplitude F = 0.1 and frequency ω = 1.

We assume Φ = 0, so there is no coupling of the phases, and Δϕ = 0, which
corresponds to a broadside angle of incidence for the external signal. To see the
amplification best, it is important to set the parameters in the model Eq. (6.49)
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Fig. 6.21 Signal amplification in a feedforward network of van der Pol oscillators. Parameters are:
α = 0.01, ω j = ω0 = 1.0, κ = 1.0, and Φ = 0, F = 0.1, Δϕ = 0.0

near the onset of the Hopf bifurcation, so we assume α = 0.01. Figure 6.21 shows
a resonant effect that leads to signal amplification, with optimal response when the
oscillators are synchronized with the external signal and the frequency of the external
signal is close to the natural frequency of the oscillators.

When the frequency detuning is large, the individual oscillators undergo a sec-
ondary Hopf bifurcation that leads to quasi-periodic oscillations, and it decreases
the amplification effect. This can be observed in Fig. 6.21 in the regions where
ω/ω0 < 0.5 and in the interval ω/ω0 > 1.5.

6.8 Coupled Fluxgate System

Consider, for instance, the fluxgate magnetometer that was described earlier on, in
Chap. 4, Sect. 4.10. Recall that such magnetometer contains a ferromagnetic core
wound by two coils, one is the excitation coil to induce oscillations, and one is the
pick-up coil, which is designed to detect the presence of external fields and to record
the oscillations. Recall also that a one-dimensional ODE, Eq. (4.73), serves as a
model for the single-core fluxgate magnetometer. We could then create a network of
N fluxgate magnetometers, by connecting the flux output from one fluxgate into the
next one in a ring fashion, as is shown schematically in Fig. 6.22.

Mathematically speaking, a model for the sensor network would take the form
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Fig. 6.22 (Left) Schematic of a netws ork-based sensor architecture. Individual sensors are coupled
unidirectionally in a ring fashion. Itwill be shown later that a network-based systemmayoffer certain
advantages, e.g., performance enhancements, that cannot be achieved by individual sensor units

τi
dxi
dt

= −xi + tanh(ci (xi + λi+1xi+1 + He(t) + Hx )), (6.50)

where xi (t) represents the magnetic flux at the output (i.e. in the secondary coil)
of each individual i th unit, with i = 1, . . . N mod N ; λi+1 describes the coupling
strength connecting the flux output from unit i + 1 to unit i ; and τi is the time
constant of each individual fluxgate. If we make the underlying assumption of the
fluxgates to be identical, then the revised model can be cast as

τ
dxi
dt

= −xi + tanh(c(xi + λxi+1 + He(t) + Hx )). (6.51)

In both cases, non-identical and identical fluxgates, the model equations represent
a network model because they contain a discrete number of units, N in this case,
coupled together; and each unit is governed by a continuous model.

A fundamental question that arises almost immediately is: why would we want
to create a network of fluxgate magnetometers?

Well, there are several reasons for building such a network. One of then has to
do with the fact that, collectively, a network may exhibit oscillatory behavior even if
none of the units can oscillate on their own. Figure 6.23 illustrates this point.

The fundamental idea is based on the fact that when certain systems are intercon-
nected in some fashion, the symmetry of the resulting topology of connections, i.e.,
which units are coupled with each other, and the nonlinear characteristics of each
individual unit, might be exploited to induce the interconnected network to generate
a collective pattern of oscillation via an appropriate coupling function, see Fig. 6.23.

From a mathematical standpoint, the choice of coupling function can be any type
of function, leading to a wide range of network solutions. From an engineering
standpoint, the coupling function is restricted, however, by the type of system or
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Fig. 6.23 Coupling-induced
oscillations can appear
(under certain coupling
strength) in a network of
three non-identical fluxgate
magnetometers coupled
unidirectionally as is shown
in Fig. 6.22

technology being used. This is, in other words, a model-dependent feature of the
system. For instance, fluxgate magnetometers coupled through magnetic flux are
restricted to unidirectional coupling since directing magnetic flux in both directions
can be extremely complicated to achieve. Mechanical gyroscopes can be coupled,
however, bidirectionally through a series of mass-spring systems.

The purpose of this approach is to develop a robust and programmable dc sensing
device that can be used to investigate the theoretical limit [64, 65] of magnetic-field
sensitivity. In fact, in this section we describe the overall endeavor, which lead to the
model, design and, ultimately, to the fabrication of the most sensitive fluxgate-type
of magnetometer on the planet.

6.8.1 Network Model

We now consider a network of N fluxgate magnetometers coupled unidirectionally
in a ring fashion, as is shown schematically in Fig. 6.22. We assume the individual
fluxgates to be identical as well as the common coupling strength λ. Thus the global
symmetries of the network are described by the group ZN of cyclic permutations of
N objects.

The mathematical model that governs the collective behavior of the network of
fluxgate sensors of Fig. 6.22 is now a system of Ordinary Differential Equations
(ODEs) in the following form:

τi
dxi
dt

= −xi + tanh(c(xi + λxi+1 + ε)), (6.52)
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where xi (t) represents the (suitably normalized) magnetic flux at the output (i.e. in
the secondary coil) of each individual i th unit, with i = 1, . . . N mod N , and ε 
 U0

is the externally applied dc magnetic flux (denoted as Hx in the model of a single
fluxgate, see Eq. (4.73)), c is again the temperature-dependent nonlinearity parameter
(recall that each element is bistable for c > 1), andU0 is the energy barrier height of
any of the elements, absent the coupling. Notice that the (uni-directional) coupling
term, having strength λ, which is assumed to be equal for all three elements, is inside
the nonlinearity. This is a direct result of the mean-field nature of the description in
the fluxgate magnetometer, the coupling is through the induction in the primary or
“pick up” coil. More importantly, observe the absence of the biasing signal He(t).
This is not a mistake.

Since the limit of magnetic sensitivity depends, mainly, on the ability of the
network to produce stable self-biasing oscillations, our goal is to study the behavior of
a coupled fluxgate system system in response to changes in parameters. In particular,
the existence and stability of periodic solutions in response to changes in the coupling
strength, the topology of connections, and the temperature-related parameters. But
first, we need to examine the equilibrium points of the model Eq. (6.52). Let Xe =
(x1, . . . , xN ) denote such equilibrium point. Notice that Xe is actually a collection
of N values, i.e., Xe ∈ RN . Thus, to find an equilibrium point analytically, we would
need to solve the following algebraic nonlinear system of N equations

−xi + tanh(c(xi + λxi+1 + ε)) = 0, i = 1, . . . , N ,

for the N unknowns (x1, . . . , xN ). This is not an easy task, even when N is small.
To get insight, we examine next, from a geometric and numerical standpoint, the
special case of N = 3. However, we will be primarily interested in the N odd case,
since it has been shown that when N is even there are no oscillations nor solutions
connecting equilibrium points, i.e., heteroclinic cycles [66, 67].

6.8.2 Geometric Description of Solutions by Group Orbits

We start with a brief description of the solution sets for Eq. (6.52) as the coupling
strength λ varies. The bifurcation methods generalize to arbitrary N , but the detailed
specifics for finding and visualizing the basins of attraction are limited to 3D, so we
focus on N = 3. Without loss of generality, the external field ε is set to zero and
after re-scaling time the time constant can be set to τi = 1. The specific system of
equations used for our subsequent figures satisfies:

ẋ1 = −x1 + tanh(c(x1 + λx2))
ẋ2 = −x2 + tanh(c(x2 + λx3))
ẋ3 = −x3 + tanh(c(x3 + λx1)),

(6.53)
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where c = 3. Observe now that since the activation function tanh is odd, Eq. (6.53)
remains unchanged under the transformation xi → ±xi . Under unidirectional cou-
pling with positive feedback the network equations are also unchanged under the
cyclic transformation xi → xi+1. It follows that the symmetries of the coupled
bistable system (6.53) are captured by the 24-elements group

Γ � Z3
2 ⊗ Z3,

which is generated by

(x1, x2, x3) → (±x1,±x2,±x3)
(x1, x2, x3) → (x2, x3, x1).

The various type of solutions of Eq. (6.53) can be observed in the bifurcation
diagram shown in Fig. 6.24, which was computed with the aid of the continuation
software package AUTO [68]. When the coupling parameter is sufficiently large,
and negative, then all solutions other than the unstable trivial solution and its 1D
symmetric stable manifold, emanating along the line x1 = x2 = x3, are attracted to
a stable asymmetric periodic orbit with 3-fold symmetry. The oscillations occur for
λ < λc, where λc is a critical coupling strength to be determined later on. At the
other end, when the coupling parameter is sufficiently large, and positive, or at least
λ > λc, then all solutions other than the unstable trivial solution and its 2D stable
manifold are attracted to one of two stable symmetric equilibria. The same result
ensues if N is even, or if the coupling is bidirectional.

For values of λ slightly less than λc, there is a small interval λHB ≤ λ ≤ λc

where global oscillations and synchronous equilibria of the form (x1, . . . , xN ) =
(x∗, . . . , x∗) can coexist. In this interval, complex transitions that involve multiple
equilibrium points, periodic solutions, and heteroclinic connections are observed.
A close-up view of the interval of bistability of large amplitude oscillations and
stable synchronous equilibria is also included in Fig. 6.24. The four branches of
unstable equilibria that appear via saddle-node bifurcations (labeled LP) correspond
to nonsynchronous equilibria.

To unravel those transitions we start with a large negative value of λ and replot the
bifurcation diagram using x1 in Fig 6.25. As λ increases, there is a pitchfork bifur-
cation, producing two new symmetric equilibria moving away from the origin along
its 1D stable manifold. As λ further increases, the 1D stable manifold expands into
two conical regions symmetric about the origin, which morph into two 3-sided pyra-
midal shaped regions surrounding two symmetric stable equilibria with additional
increases in λ. The 3-fold stable limit cycle has its period increase until it spends
longer and longer times near six points, which appear as stable equilibria through a
saddle node bifurcation. A second saddle node bifurcation produces six other asym-
metric equilibria, which arise and generate separatrices. These divide our space into
eight basins of attraction. Two are the small symmetric pyramidal shaped regions
centered on the line x1 = x2 = x3, while the other six attracting regions surround
these symmetric regions.
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Fig. 6.24 Bifurcation diagram for a system of three identical bistable elements coupled unidi-
rectionally and without delay. Solid (dotted) lines indicate stable (unstable) equilibrium points.
Filled-in (empty) circles represent stable (unstable) periodic oscillations. (Insert) Close-up view of
the region of bistability between large-amplitude oscillations and synchronous equilibria.

As λ increases to zero, the uncoupled state, these eight basins of attraction shrink
or expand until they become simply the eight octants in 3-space with stable equi-
libria near xi ≈ ±1 for i = 1, 2, 3. As λ becomes more positive, the two symmetric
basins of attraction increase in size, while the six asymmetric basins shrink in size.
Another saddle node bifurcation occurs with the loss of six stable equilibria in the
six asymmetric basins of attraction, and the separatrices between these equilibria
and the remaining symmetric equilibria vanish. The remaining 2D stable manifold
(separatrix) with 3-fold symmetry divides our 3-space into two basins of attraction
containing our only two remaining stable equilibria. Further increases inλ only result
in a flattening of this separatrix between the symmetric stable equilibria.

Recall from Chap. 5, Sect. 5.7, the definition of the group orbit of any point x(t):

Γ x = {γ x : γ ∈ Γ }.

Thus, collectively, there are 27 equilibrium points, which can be arranged into one
of four group orbits generated by the symmetry group Γ � Z3

2 ⊗ Z3, see Fig. 6.26.
Thus, Fig. 6.26 can be interpreted as a color-coded evolution of four distinct group
orbits as a function ofλ, which yields: a straight-line in themiddle connecting the two
symmetric equilibria (±x,±x,±x) and the origin; six gray-to-black corner segments
connecting six asymmetric stable nodes of the form (±x,±x,∓x); twelve blue
curves for the group orbit of twelve asymmetric unstable nodes with representative
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Fig. 6.25 Bifurcation diagram for system (6.53) computed in the equilibrium continuation program
AUTO [68]. The diagram provides the values of x1 at equilibria and the maximum and minimum
values of x1 at periodic orbits. Solid (dashed) lines indicate stable (unstable) equilibrium points.
For unstable equilibria, black (dashed) indicates a 3D unstable manifold, red (dashed) has a 1D
stable manifold, and blue (dashed) presents a 2D stable manifold. Filled-in (empty)circles represent
stable (unstable) periodic oscillations. Parameters are c = 3 and ε = 0. Notation: HB denotes Hopf
bifurcation points and PB is a pitchfork bifurcation point

(0,±x,±x); six red curves which connect the remaining six asymmetric unstable
saddle nodes of the type (0, 0,±x). All other equilibria can be readily obtained
by applying directly the 24-elements of the group Γ to the representative elements
listed above. We observe in Fig. 6.26 that if one begins at any one of the asymmetric
equilibria and increases and decreases λ between the saddle node bifurcation values,
then one can continuously reach all the remaining 23 asymmetric equilibria.
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Fig. 6.26 There are 27 equilibria of Eq. (6.53) shown in this diagram at various values of λ. Three
are the origin and the two symmetric equilibria. There are 24 asymmetric equilibria, which over the
range of λ connect in a long chain. The gray-black equilibria are stable. The blue equilibria have
2D stable manifolds, and the red equilibria have 1D stable manifolds. The darker the shade of blue
or red the higher the value of λ. Changes in color occur at saddle node bifurcations. A gray-black
straight line for the graph of the group orbit of two symmetric equilibria, including the origin and
three additional curves, red, blue and gray, for the 24 asymmetric equilibria

6.8.3 Onset of Large Amplitude Oscillations

We now investigate the global bifurcation that leads to the onset of stable infinite-
period oscillations, and seek an analytic expression for the critical point λc. It is
well-known that a generic feature of symmetric nonlinear systems is the existence
of heteroclinic cycles, defined as a collection of solution trajectories that connect
sequences of equilibria and/or periodic solutions [69]. Heteroclinic cycles are highly
degenerate. Certain symmetries, however, can facilitate the existence of cyclic trajec-
tories that can “travel” through invariant subspaces while connecting, via saddle-sink
connections, one solution to another. In Eq. (6.52), in particular, we find six near-
invariant planar regions (with λ < 0):

δi = {xi : λxi < 1, x(i+2 mod 3) = −1}, i = 1, 2, 3,

δi = {xi : λxi > −1, x(i+2 mod 3) = 1}, i = 4, 5, 6.

Then the solution trajectories on the cycle lie on flow-invariant lines, see
Figure 6.27, defined by the intersection of the invariant planes. A typical trajec-
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Fig. 6.27 Stable limit cycle solutionswith amplitudeO(1) appear in system (6.52) for large negative
values of λ. Fixed parameters are: c = 3, ε = 0. Arrows indicate the direction of the flow

tory on the cycle connects six saddle points located near the points: (1,−1,−1),
(1, 1,−1), (−1, 1,−1), (−1, 1, 1), (−1,−1, 1), and (1,−1, 1).

The saddle points exist only for λ > λc and are annihilated when the periodic
solutions appear. This suggests that we could determine the exact location of the
heteroclinic cycle by finding the regions of parameter space where the saddle points
exist, but leads to the complicated task of finding roots of polynomials of high order.
On the other hand, we can use the fact that, at the birth of the cycle, solutions are
confined to invariant lines. The flow on these lines cannot be obstructed by other
equilibrium points, unless they are part of the cycles. This leads to the following
conditions for existence of a cyclic solution:

− x + tanh(c(x − λ + ε)) > 0 (6.54)

−x + tanh(c(x + λ + ε)) < 0. (6.55)

When ε = 0, the lhs of (6.54) and (6.55) each have a local minimum and a local max-
imum for x ∈ (−1, 1). When ε > 0, both extrema are shifted vertically. Thus, (6.54)
is satisfied for ε = 0 as well as ε > 0. Hence, we only have to worry about con-
dition (6.55). To find the critical point λc, we then compute the local maximum
of (6.55), set it to zero, and solve for λ. We get:

λc = −ε + 1

c
ln(

√
c + √

c − 1) − tanh(ln(
√
c + √

c − 1)). (6.56)
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Fig. 6.28 Two-parameter
continuation of Hopf
bifurcation points (dash line,
empty circles, and squares)
and heteroclinic connections
(black line obtained
numerically via AUTO,
superimposed squares
obtained analytically).
Periodic solutions are
globally stable only for
parameter values (λ, ε)
below the black line, and
unstable everywhere else.
The temperature-related
parameter is c = 3

An alternative derivation shows that this critical value of coupling strength can
be expressed as

λc = −ε − xin f + c−1 tanh−1 xin f ,

with xin f = √
(c − 1)/c is the inflection point of the energy function

U (x) = x2

2
− T ln

(
cosh

(
x + h

T

))
.

To verify this result, we conducted, numerically, a two-parameter continuation
analysis using AUTO with c = 3, see Fig. 6.28. The dark diagonal line represents
the loci of the heteroclinic cycle obtained numerically by AUTO, which shows very
good agreement with the analytic loci determined by (6.56) (superimposed square
points). The other curves represent the loci of HB points, which in all cases lead to
unstable periodic solutions.

6.8.4 Frequency Response

The oscillation frequencyω, as a function of the system parameters, can be calculated
from its period T . Near the onset λc of oscillations, T is essentially the time required
for a solution to travel along the invariant lines of the heteroclinic cycle. By symmetry,
the time spent on each branch is approximately the same. Hence,

T ≈ 6
∫ 1

−1
dt, where dt ≈ dx/(−x + tanh(c(x − λ + ε))),
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Fig. 6.29 Frequency response vs. system parametersλ and ε, for coupled system (6.52) with N = 3
and c = 3

and the integral must be evaluated numerically. In Fig. 6.29, we examine the relation
between frequency and system parameters λ and ε with c = 3. The zero-frequency
line in the (λ, ε) plane is in very good agreement with our expression (6.56) for the
critical coupling strength.

Then a numerical approximation (for the special case of N = 3) for the frequency
dependence on the system parameters can be obtained:

ω = 0.115
√−λ − 0.85ε − 0.4345. (6.57)

6.8.5 Sensitivity Response

Residence Times Detection. A new sensing technique, the Residence Times Detec-
tion, consists of measuring the “residence times” of the oscillations of the sensor
device about the two stable states of the potential energy function U (x). In the
absence of noise and of external signals, the potential energy function is symmetric;
hence, the two residence times are identical, i.e., T+ = T−. In the presence of a target
signal, however, the hysteresis loop is skewed and the crossing-times are no longer
equal. Then either the difference |T+ − T−| or the ratio T+/T− of residence times can
be used to quantify the signal, see Fig. 6.30. In the presence of noise, the residence
times must be replaced by their ensemble averages.
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Fig. 6.30 Residence Time Detection. (Top) Without an external field, i.e., ε = 0, the wave form
has top-to-bottom symmetry. (Bottom)With an external field, ε = 0.01 in this case, the wave forms
develops an asymmetry. Then the difference or ratio of crossing times can used to quantify the
external signal

Advantages of this procedure are:

• The RTD procedure can be implemented on-chip without the computationally
demanding power spectral of the system output;

• Large-period oscillations yield large differences/ratios of residence times, i.e.,
better sensitivity;

• RTD can be optimized to require very low onboard power.

Numerical simulations show that, near the onset pointλc, the period of the summed
waveform becomes very large, which causes the waveform to yield larger values of
the RT difference/ratio when an external signal is present, i.e., higher sensitivity.
For illustrative purposes, Figure 6.31 compares the theoretical sensitivity of a single
fluxgate with that of a network of N = 3 sensors. The slope of a RTD curve is
proportional to the level of sensitivity. It follows that a network of three fluxgates
with RTD ratio readout can be, approximately, 200 times more sensitivity than a
single fluxgate.

6.9 Heteroclinic Connections

In simple terms, a heteroclinic cycle is a collection of solution trajectories that
connects sequences of equilibria, periodic solutions, and/or chaotic sets [69–74].
As time evolves, a typical nearby trajectory stays for increasingly longer periods
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Fig. 6.31 Signal detection via residence time (left) differences and (right) ratios

near each solution before it makes a rapid excursion to the next solution. For a more
precise description of heteroclinic cycles and their stability, seeMelbourne et al. [74],
Krupa and Melbourne [73], the monograph by Field [71], and the survey article by
Krupa [69]. The existence of structurally stable heteroclinic cycles is considered
a highly degenerate feature of both types of systems, continuous and discrete. In
other words, typically they do not exist. In continuous systems, where the governing
equations normally consist of systems of differential equations, it is well-known that
the presence of symmetry can, however, lead to structurally stable, asymptotically
stable, cycles [41, 75]. Let’s consider an example.

Example 6.3 (The Guckenheimer-Holmes Cycle) Figure 6.32 illustrates a cycle
involving three steady-states of a system of ODE’s proposed by Guckenheimer and
Holmes [41]. Observe that as time evolves a nearby trajectory stays longer on each
equilibrium.

The group of symmetries, Γ , in this example, has 24 elements and is generated
by the following symmetries

(x, y, z) → (±x,±y,±z)
(x, y, z) → (y, z, x)

Note that, in fact, this is a homoclinic cycle since the three equilibria are on the
group orbit given by the cyclic generator of order 3. The actual system of ODE’s can
be written in the following form

ẋ1 = μx1 − (ax21 + bx22 + cx23 )x1
ẋ2 = μx2 − (ax22 + bx23 + cx21 )x2
ẋ3 = μx3 − (ax23 + bx21 + cx22 )x3.

(6.58)
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Fig. 6.32 Heteroclinic cycle found between three equilibrium points of the Guckenheimer and
Holmes system. a Saddle-sink connections in phase-space, b Time series evolution of a typical
nearby trajectory. Parameters are: μ = 1.0, a = 1.0, b = 0.55, c = 1.5

In related work that describes cycling chaos, Dellnitz et al. (1995) point out
that the Guckenheimer-Holmes system (6.58) can be interpreted as a coupled cell
system (with three cells) in which the internal dynamics of each cell is governed by
a pitchfork bifurcation of the form f (xi ) = μxi − ax3i , i = 1, 2, 3. The network can
be expressed as

dxi
dt

= f (xi ) + h(x j , xi )xi ,

where h(x j , xi ) = −(bx2i+1 + cxi+2), with all indices evaluated mod 3. As μ varies
from negative to positive thropugh zero, a bifurcation from the trivial equlibrium
xi = 0 to nontrivial equlibria xi = ±√

μ occurs. Guckenheimer and Holmes (1988)
show thatwhen the strength of the remaining terms in the systemofODE’s (which can
be interpreted as coupling terms) is large, an asymptotically stable hetroclinic cycle
connecting these bifurcated equilibria exists. The connection between the equilibria
in cell one to the equilibria in cell two occurs through a saddle-sink connection
in the x1x2−plane (which is forced by the internal symmetry of the cells to be an
invariant plane for the dynamics). AsDellnitz et al. (1995) further indicate, the global
permutation symmetry of the three-cell system guarantees connections in both the
x2x3–plane and the x3x1–plane, leading to a heteroclinic connection between three
equlibrium solutions.

Although heteroclinic cycles are said to be non-generic features of nonlinear
systems (either because they typically do not exist or because it is very difficult to
produce them), one can systematically use the lattice of isotropy subgroups to find a
heteroclinic cycle. Next we show how this can be done.
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Fig. 6.33 Pattern inside lattice of subgroups that suggests the existence of heteroclinic cycles

6.9.1 Finding Heteroclinic Cycles

For systems whose symmetries are described by the continuous group O(2), i.e. the
group of rotations and reflections on the plane, Armbruster et al. [76] show that
heteroclinic cycles between steady-states can occur stably, and Melbourne et al. [74]
provide a method for finding cycles that involve steady-states as well as periodic
solutions. Let Γ ⊂ O(N ) be a Lie subgroup (where O(N ) denotes the orthogonal
group of order N ) and let g : RN → R

N be Γ -equivariant, that is,

g(γX) = γg(X),

for all γ ∈ Γ . Consider the system

dX

dt
= g(X).

Note that N = kn in an n-cell system with k state variables in each cell. Equiv-
ariance of g implies that whenever X (t) is a solution, so is γX (t). Using fixed-point
subspaces, Melbourne et al. (1989) suggest a method for constructing heteroclinic
cycles connecting equilibria. Suppose thatΣ ⊂ Γ is a subgroup. Then the fixed-point
subspace

Fix(Σ) = {X ∈ R
N : σX = X ∀σ ∈ Σ}

is a flow invariant subspace. The idea is to find a sequence of maximal subgroups
Σ j ⊂ Γ such that dim Fix(Σ j ) = 1 and submaximal subgroups Tj ⊂ Σ j ∩ Σ j+1

such that dim Fix(Tj ) = 2, as is shown schematically in Figure 6.33. In addition,
the equilibrium in Fix(Σ j ) must be a saddle in Fix(Tj ) whereas the equlibrium in
Fix(Σ j+1) must be a sink in Fix(Tj ).

Such configurations of subgroups have the possibility of leading to heteroclinic
cycles if saddle-sink connections between equilibria in Fix(Σ j ) and Fix(Σ j+1) exist
in Fix(Tj ). It should be emphasized that more complicated heteroclinic cycles can
exist. Generally, all that is needed to be known is that the equilibria in Fix(Σ j ) is a
saddle and the equlibria in Fix(Σ j+1) is a sink in the fixed-point subspaceFix(Tj ) (see
Krupa andMelbourne (1995)) though the connections can not, in general, be proved.
Since saddle-sink connections are robust in a plane, these heteroclinic cycles are
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stable to perturbations of g so long asΓ -equivariance is preserved by the perturbation.
For a detailed discussion of asymptotic stability and nearly asymptotic stability of
heteroclinic cycles, which are also very important topics, see Krupa and Melbourne
(1995).

Near points of Hopf bifurcation, this method for constructing heteroclinic connec-
tions can be generalized to include time periodic solutions as well as equilibria. Mel-
bourne, Chossat, and Golubitsky (1989) do this by augmenting the symmetry group
of the differential equations with S1—the symmetry group of Poincare-Birkhoff nor-
mal form at points of Hopf bifurcation—and using phase-amplitude equations in the
analysis. In these cases the heteroclinic cycle exists only in the normal form equa-
tions since some of the invariant fixed-point subspaces disappear when symmetry
is broken. However, when that cycle is asymptotically stable, then the cycling like
behavior remains even when the equations are not in normal form. This is proved by
using asymptotic stability to construct a flow invariant neighborhood about the cycle
and then invoking normal hyperbolicity to preserve the flow invariant neighborhood
when normal symmetry is broken. Indeed, as is shown byMelbourne (1989), normal
form symmetry can be used to produce stable cycling behavior even in systems with-
out any spatial symmetry. More generally, it also follows that if an asymptotically
stable cycle can be produced in a truncated normal form equation (say truncated at
third or fifth order), then cycling like behavior persists in equations with higher order
terms—even when those terms break symmetry—and the cycling like behavior is
robust.

6.9.2 A Cycle in a Coupled-Cell System

Buono, Golubitsky, and Palacios [70] proved the existence of heteroclinic cycles
involving steady-state and time periodic solutions in differential equations with Dn

symmetry. In their approach, they studied various mode interactions—in particular,
the six-dimensional steady-state/Hopfmode interactionwhereDn acts by its standard
representation on the critical eigenspaces. The exact cycles they discussed are found
in the normal form equations which have Dn × S1 symmetry when n = 6 and n =
5—though much of their discussion is relevant for a general Dn system.

Consider for instance a system of differential equations with the symmetries of
a hexagon, which are described by the dihedral group D6. Reflectional symme-
tries of a hexagon come in two (nonconjugate) types: those whose line of reflection
connects opposite vertices of the hexagon (κ) and those whose line of symmetry
connects midpoints of opposite sides (γκ). It is known that D6 symmetry-breaking
steady-state bifurcations produce two nontrivial equilibria—one with each type of
reflectional symmetry—and D6 symmetry-breaking Hopf bifurcations produce two
standing waves—one with each type of reflectional symmetry. In normal form the
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Fig. 6.34 Subgroups in D6 × S1 lattice that permit the existence of heteroclinic cycles

symmetry groups of these four solutions are Z2(κ) × S1, Z2(γκ) × S1, Z2(κ) × Zc
2,

and Z2(γκ) × Zc
2 where Z

c
2 = Z2(π,π). Using the ideas described by Melbourne et

al. (1989), the lattice shown in Figure 6.34(top) suggests that robust, asymptotically
stable heteroclinic cycles can appear in unfoldings of D6 normal form symmetry-
breaking steady-state/Hopf mode interactions.

The cycle would connect the first steady-state with the first standing wave with the
second steady-state with the second standing wave and back to the first steady-state.
A general system of ODE’s with D6 × S1-symmetry has the form

dz

dt
= g(z,λ,μ) = (C(z), Q(z)) ∈ C × C2,

where
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C(z) = C1z0 + C3 z̄0z1 z̄2 + C5 z̄50 + C7 z̄0(z̄1z2)2 + C9 z̄30 z̄1z2 + C11z0(z1 z̄2)3

Q(z) = Q1

[
z1
z2

]
+ Q2δ

[
z1
−z2

]
+ Q3

[
z20z2
z̄20z1

]
+ Q4δ

[
z20z2−z̄20z1

]
+

Q5

[
z̄40z2
z40z1

]
+ Q6δ

[
z̄40z2−z40z1

]
+ Q7

[
z̄20 z̄1z

2
2

z20z
2
1 z̄2

]
+

Q8δ

[
z̄20 z̄1z

2
2−z20z
2
1 z̄2

]
+ Q9

[
(z̄1z2)2z2
(z1 z̄2)2z1

]
+ Q10δ

[
(z̄1z2)2z2
−(z1 z̄2)2z1

]
,

where δ = |z2|2 − |z1|2, C j = c j + iδc j+1, c j are real-valued D6 × S1-invariant
functions and Q j = p j + q j i are complex-valued D6 × S1-invariant functions
depending on two parameters λ and μ. Numerical integration of this D6 × S1-
equivariant system (in normal form) yields the cycle shown in Fig. 6.34(bottom).

6.10 Exercises

Exercise 6.1 For each of the following problems, write the equations as a first-order
system and then apply the Routh-Horowitz criterion to investigate the stability of the
zero equilibrium solution.

(a) x ′′′ + 6x ′′ + 3x ′ + 2x = 0.
(b) x IV + 2x ′′′ + 4x ′′ + 7x ′ + 3x = 0.

Exercise 6.2 Apply the Routh-Horowitz criterion to determine the region of param-
eter space, (μ, ν), where the zero equilibrium solution of the system

x IV + x ′′′ + μx ′′ + νx ′ + x = 0,

is asymptotically stable.

Exercise 6.3 Apply the Routh-Horowitz criterion to investigate for which values
of the parameters μ and ν the zero equilibrium solution of the following system is
asymptotically stable:

dx

dt
= μx + νy

dy

dt
= x − z

dz

dt
= −x + y.

Exercise 6.4 Consider the two spring-mass system model Eq. (6.4).

(a) Apply the transformation: y1 = x1 − x2, y2 = y1 + y2 and rewrite Eq. (6.4) in
terms of y1 and y2. Show that, in these new coordinates, the dynamics of spring-
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Fig. 6.35 Two coupled
pendulums

mass system decouples from one another. Observe that y1 = 0 corresponds
to synchronized oscillations of the masses, while y2 = 0 represents anti-phase
oscillations.

(b) Solve the decoupled system explicitly.
(c) Find a general solution for x1(t) and x2(t).
(d) Consider the initial conditions: x1(0) = x2(0) = 0 and ẋ1(0) = ẋ1(0) = 0. Find

a particular solution for x1(t) and x2(t).

Exercise 6.5 A mathematical model of a self-sustained electro-mechanical trans-
ducer consisting of an electrical part and a mechanical part coupled through Laplace
force and Lenz electromotive voltage [77], can be written by coupling a van der Pol
oscillator to a Duffing oscillator, leading to:

d2x

dt2
+ ω2

1x + μ1(1 − x2)
dx

dt
+ f

d2y

dt2
= 0

d2y

dt2
+ ω2

1 y + μ2
dy

dt
+ cy3 − dx = 0,

(6.59)

where ω j , μ j , ( j = 1, 2), c, d, and f are parameters.

(a) Write Eq. (6.59) as a first-order system in the new variables [x1, x2, y1, y2]T .
(b) Show that for c ≥ 0 the first-order system has only one equilibrium point,

(0, 0, 0, 0),while for c < 0, twonewnontrivial equilibriumpoints appear besides
the trivial equilibrium point.

(c) Assume c ≥ 0, so that Eq. (6.59) admits only the trivial equilibrium. Apply the
Routh-Horowitz criterion to determine the conditions (on the parameters) for
the trivial equilibrium to be stable.

(d) Determine the parameter conditions under which the system Eq. (6.59) under-
goes a Hopf bifurcation.

Exercise 6.6 Consider the following set of two identical pendulums coupled to one
another through a spring, as is shown in Fig. 6.35

Assuming the pendulums have length L and mass m, a mathematical model of
the pendulums is given by
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m
d2x1
dt2

+ mg

L
x1 = k(x2 − x1)

m
d2x2
dt2

+ mg

L
x2 = k(x1 − x2),

(6.60)

where x1 ≈ Lθ1, x2 ≈ Lθ2, represent small displacements of the angles formed by
the pendulums from a vertical position, g is gravity and k is the spring constant
connecting both pendulums.

In this exercise you will need to show, on the basis of symmetry alone, that the
coupled pendulums exhibit two modes of oscillations: a synchronized solution in
which both pendulums oscillate with the same amplitude and same phase, and an
anti-phase solution in which the oscillations are out-of-phase by half a period.

(a) Start by recognizing that the group of symmetries of the coupled pendulums
Eq. (6.60) is Γ = D2.

(b) Let X1 = [x1, ẋ1]T and X2 = [x2, ẋ2]T . Rewrite the model Eq.(6.60) in the fol-
lowing form:

Ẋ1 = f (X1;λ) + C(k)(X2 − X1)

Ẋ2 = f (X2;λ) + C(k)(X1 − X2),
(6.61)

where λ is a parameter and C(k) is a 2 × 2 matrix, both to be determined.
(c) Compute the linearization L of the network dynamics as is described by

Eq. (6.61).
(d) Since X = (X1, X2) ∈ R

4, it follows that R4 is the phase-space of the coupled
system. Then, apply the isotypic decomposition ofC4 byΓ = D2, which is given
by

C4 = V0 ⊕ V1,

and show that V0 = [v, v]T and V1 = [v,−v]T , where v ∈ R
2, are eigenvectors

of L .
(d) Employ coordinates along the isotypic components to diagonalize L . Then argue

that Hopf bifurcations in L allow us to predict the existence of synchronized and
anti-phase oscillations. Notice that this argument is a model-independent feature
of the symmetry of the network system. In other words, same predictions are
valid with other type of oscillators, as long as the Hopf bifurcation conditions
are satisfied.

Exercise 6.7 In this exercise you will study the stability properties of the two
branches of oscillations, which are predicted to exist on the basis of symmetry, in the
coupled pendulums model Eq. (6.60). That is, apply the Routh-Horowitz criterion
to determine the conditions (on the parameters) for the synchronized and anti-phase
solutions of the coupled pendulums Eq. (6.60) to be stable.

Exercise 6.8 Once again, consider the coupled pendulum Eq. (6.60).
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(a) Apply the transformation: y1 = x1 − x2, y2 = y1 + y2, rewrite Eq. (6.60) in
terms of these new coordinates and show that the dynamics of y1 and y2 decou-
ple from one another. Observe that in these coordinates, y1 = 0 corresponds to
synchronized oscillations of the pendulums, while y2 = 0 represents anti-phase
oscillations.

(b) Write solutions for the decoupled system as:

y1 = A cosω1t, y2 = B cosω2t,

where A and B are constants, and ω1 and ω2 are the normal frequencies, which
need to be found.

(c) Find a general solution for x1(t) and x2(t).
(d) Consider the initial conditions: x1(0) = x2(0) = 0 and ẋ1(0) = ẋ1(0) = 0. Find

a particular solution for x1(t) and x2(t).

Exercise 6.9 Consider the mathematical model of a fluxgate magnetometer: ẋ =
−x + c tanh(c (x + He(t) + Hx )). Compute all equlibrium points and study the
bifurcations that lead to the creation or annihilation of equilibria.

Exercise 6.10 Consider the three-cell network of Fig. 6.6 whose dynamics is
described by Eq. (6.11). Conduct computer simulations of the network equations
to show the existence of a collective pattern of oscillations with ΣX = Z2(κ,π)

symmetry. Hint: One of the cells must oscillate at twice the frequency of the other
two. Try a slightly larger value of λ than that of the traveling wave pattern. For
instance, try λ = 1.1.

Exercise 6.11 Consider the model of a three-cell feedforward network as it appears
in Eq. (6.25). Repeat the analysis carried out in Section 6.6 but this time with γ �= 0.
Show that the branch of periodic oscillations along the third cell exhibits μ1/6 growth
rate.

Exercise 6.12 Perform a computational bifurcation analysis of a network three flux-
gate magnetometers, similar to Eq. (6.52), but with non-identical elements. That is,
c is no longer constant as it varies from one fluxgate to the next one, so it must be
replaced by ci .

Exercise 6.13 Amathematical model for a drive-free gyroscope system is given by

mẍ j + cẋ j + κx j + μx3j = λx j+1 + 2mΩz ẏ j
m ÿ j + cẏ j + κy j + μy3j = − 2mΩz ẋ j ,

(6.62)

where λ is the coupling strength and j = 1, 2, 3 mod 3. The system is said to be
drive-free because it exploits the concept of coupling-induced oscillations to generate
oscillations. Study the bifurcations of the network Eq. (6.62). As a point of reference,
consider the same parameter values as those shown in Table 9.1, which were used
for the network of gyroscopes studied in Sect. 9.6.
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Exercise 6.14 Study the bifurcations of an array of N identical vibratory gyro-
scopes arranged in a ring configuration, coupled bidirectionally along the driving-
and sensing-modes, with equations of motion given by

mẍ j + cẋ j + κx j + μx3j = ε sinωd t + 2mΩz ẏ j + λ(x j+1 − 2x j + x j−1)

mÿ j + cẏ j + κy j + μy3j = − 2mΩz ẋ j + λ(y j+1 − 2y j + y j−1).

(6.63)
Consider the same parameter values as those shown in Table 9.1, which are used

for the stochastic network of gyroscopes studied in Sect. 9.6.

Exercise 6.15 Apply Kirchhoff’s law to derive the model equations for a network
of crystal oscillators coupled unidirectionally, as is shown in Fig. 9.12.

Exercise 6.16 Apply Kirchhoff’s law to derive the model equations for a network
of crystal oscillators coupled bidirectionally.

Exercise 6.17 Compute phase drift as a function of the number of oscillators using
the synchronized solution produced by a network of crystal oscillators coupled uni-
directionally. Discuss the scaling law distribution.

Exercise 6.18 Consider a coupled system made up of two unit masses constrained
to move on a straight line while restrained by two springs. One of the masses, labeled
x , is restrained by an anchor spring. The second mass, represented by y, is connected
to the first mass by a second spring. The entire system is driven by a periodic force
F(t) = f coswt , which is applied to the second mass, y. f represents the amplitude
of the applied force and w its frequency.

A mathematical model for the governing equations is given by

d2x

dt2
+ 2x − y + x3 = 0,

d2y

dt2
+ y − x = f coswt

(6.64)

We seek a periodic response of this two-cell couple system and, since there is no
damping, we can set

x = A coswt, y = B sinwt .

Substitute x and y, as given above, into Eq. (6.64). Set the coefficients of coswt
to zero and derive a set of two equations for the amplitudes A and B involving w

and f . Fix f and solve for A as a function of w. Also, solve for B as a function of
w. Plot both functions.

Exercise 6.19 Consider the following model of a pair of coupled van der Pol Oscil-
lators
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d2x

dt2
+ x − ε(1 − x2)

dx

dt
= εα(y − x)

d2y

dt2
+ (1 + εΔ)y − ε(1 − y2)

dy

dt
= εα(x − y),

(6.65)

where ε is a small parameter, Δ is also a parameter representing the difference in
uncoupled frequencies, also known as the detuning parameter, and α is a coupling
constant.

Set the two variable expansion: ξ = (1 + κ1ε)t and η = εt . Expand x and y up
to order O(ε), i.e., x = x0 + ε and y = y0 + εy1, respectively. Apply the chain rule
to compute first—and second-order derivates of x with respect to ξ and η. Substitute
x and y into the original equations and collect order one and order O(ε) terms. Let

x0(ξ, η) = A(η) cos ξ + B(η) sin(ξ),

y0(ξ, η) = C(η) cos ξ + D(η) sin(ξ),

where A, B, C and D are unknown amplitudes. Derive a system of four ordinary
differential equations for these amplitudes and solve them numerically. Discuss the
qualitative behavior of these equations.

Exercise 6.20 Ermentrout and Kopell (1990) illustrate the notion of “oscillator
death” with the following model:

⎧⎪⎪⎨
⎪⎪⎩

dθ1

dt
= ω1 + sin θ1 cos θ2

dθ2

dt
= ω2 + sin θ2 cos θ1

(6.66)

where θ1 and θ2 are state variables that represent phase dynamics on a circle, and
ω1,ω2 ≥ 0 are parameters.

(a) Equation (6.66) can be interpreted as a network of two coupled oscillators, in
which the phase dynamics is independent of the amplitude dynamics. Apply the
transformation φ1 = θ1 − θ2, φ2 = θ1 + θ2 and show that the phase dynamics
in these new coordinates decouples from one another.

(b) Use the decoupled phase dynamics to find the curves in (ω1,ω2) parameter space
along which bifurcations occur, and classify the various bifurcations.

(c) Plot the stability diagram in (ω1,ω2) parameter space.
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Chapter 7
Delay Models

Applications in science and engineering frequently have inherent time delays in
the dynamics of the systems that are being modeled. The time delays in the differ-
ential equations often significantly affect the behavior and analysis of the model.
This chapter introduces some mathematical models, which include time delays, and
techniques are shown for how to analyze these models.

7.1 Structure and Behavior of Delayed Systems

A fundamental principle in mathematical modeling is that the behavior of a system
arises from its own structure [1]. The majority of structures consists of the nonlin-
ear interactions between variables, i.e., coupling, and feedback loops. For instance,
electronic circuits typically involve structure in the form multiple interconnected
components. Simplified assumptions of instantaneous coupling could be made to get
first insight into the behavior of the system. However, in practice, we must account
for the fact that even high-speed, high-precision, circuit components can introduce a
delay in the coupling signal that travels between multiple components. Positive feed-
back in a system can be considered as a self-reinforcing mechanism, which can lead
to behavior in the form of exponential growth. That is, the larger the quantity of the
state of the system, the greater its net increase, further augmenting the quantity. On
the other hand, negative feedback loops seek balance as the structure counteract any
disturbances that perturb the state of the system away from an equilibrium state. The
structure and behavior of a system with a negative feedback loop is better illustrated
with Fig. 7.1.

Every negative feedback loop includes a process to compare the desired and actual
state of the system. If a discrepancy is found then a corrective action can be taken. For
instance, a delay between the time a discrepancy is observed and the corrective action
is taken can lead to delay-induced oscillations. This result might sound as counter-
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Delay
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Fig. 7.1 Classic negative feedback loop in a system with time delay

intuitive behavior. But it’s actually easy to explain. An oscillatory system typically
overshoots an equilibrium state, it reverses course, and then undershoots. The cycle is
then repeated many times. Now, overshooting and undershooting can arise from the
presence of delay, thus causing continues corrections leading to oscillatory behavior.
In military applications, Minorsky [2, 3] studied the negative feedback system in
which water is constantly pumped in order to stabilize ships against rolling waves. It
was found that the delay in the mechanical response of the pumps could actually lead
to enhancing the oscillatory effects, via delay-induced oscillations, of the waves [4].
Nevertheless, engineers often consider negative feedback loops into their designs to
help stabilize their systems[5].

7.2 System Dynamics with Negative Feedback

Let us consider a negative feedback loop modeled through the following delay dif-
ferential equations (DDEs)

ẋ(t) = g(x(t)) + f (x(t − r)), (7.1)

where x ∈ R
n is the state of the system at time t , g is just the input-output process of

the system, without delay, and the negative sign in the function f indicates negative
feedback.

In general, delay differential equations (DDEs) such as Eq. (7.1) are more com-
plicated to study and the ensuing behavior can be significantly harder to analyze.
Thus, modeling efforts should carefully consider the importance of any time delays
for a particular application.
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7.2.1 Equilibrium Points

A significant difference in the analysis of DDEs is that a solution requires knowing
the history or initial data of the unknown function, x(t), for t ∈ [−r, 0], as opposed
to just the initial conditions at time t = 0 for systems without delay. Consequently,
since the history is specified along the interval, t ∈ [−r, 0], this problem becomes
infinite dimensional. For this reason, it is quite often for DDEs to be set in the Banach
space of continuous functions with the sup norm, C([−r, 0],R).

In spite of some of the differences on initial conditions, equilibrium points of
DDEs are found in a similar manner to ODEs. However, instead of an equilibrium
point, the equilibrium is a constant function, that satisfies the algebraic equation:

g(xe) + f (xe) = 0 or f (xe) = −g(xe).

One standard negative feedback model with delay has f (x) satisfying:

f (x) > 0, f ′(x) < 0, and lim
x→∞ f (x) = 0.

In the case of linear (Malthusian) decay, in which g(x) = a x with a < 0, then it
is easy to see that this negative feedback model has a unique positive equilibrium.

7.2.2 Linearization

Let us assume the system to have an equilibrium point, xe, that satisfies the alge-
braic equation g(xe) + f (xe) = 0. To study its stability properties, we apply a small
perturbation, y(t), so that x(t) = xe + y(t).

Treating x = x(t) and xr = x(t − r) as two separate variables, we perform a
Taylor expansion of Eq. (7.1) about the equilibrium and get:

ẏ(t) = g(xe) + f (xe) + ∂g

∂x
(xe)y(t) + ∂ f

∂xr
(xe)y(t − r) + · · · .

Since xe is an equilibrium point, i.e., g(xe) + f (xe) = 0, the linearization (up to
order one) yields

ẏ(t) = ∂ f g

∂x
(xe)y(t) + ∂ f

∂xr
(xe)y(t − r). (7.2)

If we assume that g ′(xe) = a and f ′(xe) = b, then Eq. (7.2) can be rewritten as:

ẏ(t) = a y(t) + b y(t − r). (7.3)

This is a scalar linear one-delay differential equation.
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As with linear ODEs, stability analysis begins by trying a solution of the form,
y(t) = ceλt . When this solution is inserted into Eq. (7.3), we obtain:

cλeλt = aceλt + bceλ(t−r).

Dividing by c eλt gives the characteristic equation

λ − a = be−λr , (7.4)

where λ is the eigenvalue. This is known as an exponential polynomial, and this type
of characteristic equation has infinity many solutions for most sets of parameters a,
b, and r . This characteristic equation is rarely solved exactly. The linear stability
is determined by finding the sign of the real part of the complex eigenvalues with
unstable equilibria having eigenvalues with positive real parts.

The boundary of stability is a subset of solutions to the characteristic equation
with λ = iω or

iω − a = be−iωr = b (cos(ωr) − i sin(ωr)) ,

or for λ = 0, the real root crossing satisfies:

a = −b.

From the characteristic equation with λ = iω, the real and imaginary parts give the
parametric equations:

a(ω) = −b(ω) cos(ωr),

ω = −b(ω) sin(ωr).

Solving these equations for a(ω) and b(ω) gives

a(ω) = ω cot(ωr), (7.5)

b(ω) = − ω

sin(ωr),

which are clearly singular at any nπ
r , n = 0, 1, ... This creates distinct curves ω ∈(

(n−1)π
r , nπ

r

)
for n ≥ 1.

Figure 7.2 shows the image of the purely imaginary roots (or λ = 0) for the char-
acteristic Eq. (7.4) in the ab-parameter space. The real root crossing solid green line
satisfies λ = 0 with a = −b. This separates the figure into a half plane above the
line a = −b or a > −b, where there is always a positive real root. Equation (7.5)
produces the parametric curves for the image of the purely imaginary roots. A trans-
verse crossing of any of these curves results in either the addition or subtraction
of two complex eigenvalues with positive real parts. This set of curves creates a
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Fig. 7.2 Diagram of the
parametric curves in the
ab-parameter space for all
eigenvalues on the imaginary
axis (neutral stability)
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D-partitioning[6] of the complex plane into distinct regions with a distinct integer
number of eigenvalues with real positive parts.

The analysis above shows that the region where a < 0 and |b| < |a| the equi-
librium point xe is stable independent of the delay. Additionally, as r → 0, the
DDE approaches the ODE with a stability region a + b < 0. In the limit, as
ω → 0, Eq. (7.5) shows that the stability region approaches the point at

(
1
r ,− 1

r

)
.

Figure 7.2 also shows that the imaginary root crossings are distinct, non-intersecting
curves, leaving this stability boundary generated by the parametric equations with
ω ∈ (

0, π
r

)
, which is the red curve just below the negative a-axis.

Example 7.1 Consider the negative feedback problem given by:

ẋ(t) = −x(t) + 10

1 + x5(t − 2)
. (7.6)

In this example, g(x) = −x and f (x) = 10/(1 + x5),which is positive andmono-
tonically decreasing. Equilibrium points are found by solving g(xe) + f (xe) = 0,
which in this case is equivalent to solving:

10

1 + x5e
= xe.

This last equations yields, numerically, a unique solution: xe = 1.4305.
Next, we determine linearization of Eq. (7.6). Direct computations show a =

g′(xe) = 1, and

b = f ′(xe) = − 50x4e
(1 + x5e )

2
= −4.2847.

It follows from Eq. (7.3) that the linearized DDE at the equilibrium is:
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Fig. 7.3 (Left) D-partitioning of the linearized DDE with the blue circle indicating the location in
ab-parameter space of this specific example. (Right) Simulation of Eq. (7.6) with initial data being
the constant function 1

ẏ(t) = −y(t) − 4.2847 y(t − 2).

Figure 7.3a shows theD-partitioning of the linear DDE (7.3) with the delay r = 2.
The linearized form of our specific negative feedback model given by Eq. (7.6) is
marked by a blue circle in the figure.

Applying the methods shown in El’sgol’ts and Norkin[6] we find that this linear
DDE has 4 eigenvalues with positive real part. Using a nonlinear solver, the leading
four pairs of eigenvalues are:

λ1 = 0.4156 ± 1.2160 i, λ2 = 0.01305 ± 4.0496 i,

λ3 = −0.2567 ± 7.1206 i, λ4 = −0.4363 ± 10.2377 i.

As indicated earlier, there are infinitely many eigenvalues satisfying the linear
DDE (7.3), but we only list the leading four eigenvalues with positive real part.
The nature of the eigenvalues can be seen by connecting a path from the stable
region to the point in ab-parameter space, (−1,−4.2847). In the stable region there
are no eigenvalues with positive real part. To reach the point (−1,−4.2847), the
connecting path must cross both the solid red curve and the dashed red curve. The
transverse crossing of any of these curves implies two complex eigenvalues gain
positive real parts. The frequency (imaginary part) is close to the value of ω, where
it crosses the curves in this D-partitioning figure. Figure 7.3b shows a time-series
simulation of the negative feedbackmodel (7.6), which depicts sustained oscillations
with a period of approximately 5. These oscillations are driven by the leading pair
of eigenvalues, which can be seen to have a frequency of 1.2160, so have a period
2π/1.2160 ≈ 5.167.

Now consider Eq. (7.6) with the delay being r instead of 2. We know that as
r → 0, this model become an ODE, which is asymptotically stable. Since this model
is unstable with r = 2, it follows that there must be some critical delay, rc, where this
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model loses its stability. This value is where this model undergoes aHopf bifurcation.
The critical value is found by solving Eq. (7.4) with a = −1, b = −4.2847, and ω ∈
(0,π/r), where r ∈ (0, 2). With a nonlinear solver we find that the Hopf bifurcation
occurs at:

rc = 0.4336 and ωc = 4.1664.

It follows that the model (7.6) with delay, r , is stable for r ∈ (0, 0.4336) and unstable
for r > 0.4336, which is typical for this form of negative control model. It also
demonstrates how delays can significantly impact the behavior of negative feedback
models.

7.3 Stability Properties

In this section we summarize some stability results (without proofs) that can be very
useful in the analysis of differential equations with delay. The appropriate references
are included for readers interested in finding rigorous proofs. Let us start with a linear
model.

The stability properties of an equilibriumpoint of a linear delay differentialmodel,
of the form given by Eq. (7.3), can be inferred by the following theorem [7].

Theorem 7.1 (Stability of Linear Model) Consider the linear delay system

ẏ(t) = a y(t) + b y(t − r), (7.7)

where a and b are scalars with equilibrium solution x = 0. The following applies to
this equilibrium.

(i) If a + b > 0, then x = 0 is unstable.
(ii) If a + b < 0 and b ≥ a, then x = 0 is asymptotically stable.
(iii) If a + b < 0 and b < a, then there exists r∗ > 0 such that x = 0 is asymptoti-

cally stable for 0 < r < r∗ and unstable for r > r∗.

Furthermore, in case (iii), there exist a pair of purely imaginary roots at

r = r∗ = (b2 − a2)−1/2 cos−1(−a/b).

We already saw that the stability analysis of a linear delay model leads to a
characteristic polynomial of the form λ = a + be−λr , where λ is the eigenvalue that
determines the stability properties of the equilibrium. In the case of nonlinearmodels,
often times we encounter a slightly different characteristic polynomial of the form

p(λ) + q(λ)e−λr = 0, (7.8)



332 7 Delay Models

where p and q are polynomials with real coefficients, and r is our usual delay.
The roots of this characteristic polynomial, and consequently, the eigenvalues of the
stability analysis, are characterized by the following theorem [7, 8].

Theorem 7.2 (Absolute Stability) Let p and q be polynomials with real coefficients.
Suppose:

(i) p(λ) 	= 0, 
(λ) ≥ 0.

(ii) |q(iy)| < |p(iy)|, 0 ≤ y < ∞.

(iii) lim
|λ|→∞, 
(λ)≥0

∣∣∣∣
p(λ)

q(λ)

∣∣∣∣ = 0.

Then 
(λ) < 0 for every root λ and all r ≥ 0.
Note: The concept of absolute stability refers to the fact that the conclusion of the

theorem holds for every value of the delay.

Corollary 1 Let p be a polynomial with real coefficients, and have leading coeffi-
cient one. Let q = c be a constant. If

(i) All roots of p are real and negative and |p(0)| > |c|, or
(ii) p(λ) = λ2 + aλ + b, a, b > 0, and either

• b > |c|, and a2 ≥ 2b, or

• a
√
4b − a2 > 2|c| and a2 < 2b,

then 
(λ) < 0 for every root λ and all r ≥ 0.

It is also often the case to encounter multiple delays in a mathematical model. For
the particular case of two delays, r1 and r2, we have the following result [9].

Theorem 7.3 (Stability with Multiple Delays) Consider a linear delay differential
equation with two delays

dx

dt
= −ax(t − r1) − bx(t − r2), (7.9)

where a, b, r1, r2 ∈ [0,∞). The characteristic equation for the model Eq. (7.9) is

λ + ae−λr1 + be−λr2 = 0, (7.10)

where λ is a complex number.

(i) Let b = 0 and a, r1 ∈ (0,∞). A necessary and sufficient condition for all roots
of λ + ae−λr1 = 0 to have negative real parts is 0 < ar1 < π/2.

(ii) Let a, b, r1, r2 ∈ (0,∞). A sufficient condition for all roots of Eq. (7.10) to have
negative real parts is ar1 + br2 < 1, and a necessary condition for the same is
ar1 + br2 < π/2.
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7.4 Epidemic Model

A mathematical model, proposed by Cook [10], for the spread of an epidemic is in
the form of a delay differential equation through

dx

dt
= B x(t − 7)(1 − x(t)) − C x(t), (7.11)

where x(t) describes the fraction of a population which is infected at time t , b and
c are positive parameters.

We will investigate the existence and stability of the equilibrium points of the
model and conduct computer simulations of themodel equation to validate theoretical
results.

An equilibrium point, xe, is found by solving

B xe(1 − xe) = C xe.

Geometrically, there are two equilibrium points, which correspond to the intersec-
tion of the parabola B xe(1 − xe) with the straight line y = Cx . Direct calculations
show that these two intersection points are

xe1 = 0 and xe2 = B − C

B
.

Since x describes the fraction of a population that has been infected, the nontrivial
equilibrium point xe2 makes sense only when B > C .

To study the stability of the equilibrium points, we first note that in the epidemic
model the state variables x(t) and x(t − r) do not appear separated into two distinct
functions, as it was the case of negative feedback systems. Thus, we cannot apply
Eq. (7.3), not just yet. Instead, we consider first, a more general form of a delay
system

ẋ = f (x(t), x(t − r)). (7.12)

Let us assume the system to have an equilibrium that satisfies the algebraic equa-
tion f (xe) = 0. To study its stability properties, we apply a small perturbation, y(t),
so that x = xe + y(t). Treating x = x(t) and xr = x(t − r) as two separate variables,
we perform a Taylor expansion about the equilibrium

ẏ(t) = f (xe) + ∂ f

∂x
(xe)y(t) + ∂ f

∂xr
(xe)y(t − r) + · · · .

Since xe is an equilibrium point, i.e., f (xe) = 0, the linearization (up to order
one) yields
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ẏ(t) = ∂ f

∂x
(xe)y(t) + ∂ f

∂xr
(xe)y(t − r). (7.13)

In the original model Eq. (7.11),

f (x(t), x(t − r)) = B x(t − 7)(1 − x(t)) − C x(t).

Applying Eq. (7.13) yields the linearization:

dy

dt
= −(Bxe + C)y(t) + B(1 − xe)y(t − 7).

Observe that this equation is now in the same form as the linear model Eq. (7.3),
with a = −(Bxe + C), b = B(1 − xe), and the delay r = 7.

For the trivial equilibrium, xe1 = 0, we get

dy

dt
= −Cy(t) + By(t − 7).

Applying Theorem 7.1 we have a + b = B − C > 0 (which is required for the
nontrivial equilibrium to exist). Consequently, xe1 = 0 is unstable.

For the nontrivial equilibrium, xe2 = (B − C)/B, we get

dy

dt
= −By(t) + Cy(t − 7).

ApplyingTheorem7.1 again,we geta + b = −(B − C) < 0, Thus, the nontrivial
equilibrium is asymptotically stable.

Figure 7.4 illustrates numerical solutions of the epidemicmodel, with andwithout
delay. Parameters values are: B = 2 and C = 1, and initial history of 0.8. These
parameter values lead to equilibrium points: xe1 = 0 and xe2 = 0.5. The MatLab
script for numerically solving this model satisfies.

sol2 = dde23(@ddefun, [tau], history, tspan,[], B,C);

The complete MATLAB code can be found in the Appendix.
The stability analysis indicates that, for this choice of parameters, the nontrivial

equilibrium is asymptotically stable. The simulations confirm this result. Further-
more, in the case of no delay, the solution, x(t) decays exponentially towards the
nontrivial equilibrium. In the case of delay, r = 7, the solution also converges towards
the nontrivial equilibrium but it decays in gradual steps before the equilibrium is
reached.
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Fig. 7.4 Computer
simulation of epidemic
model, with and without
delay. Parameters are:
B = (2 and C = 1.
MATLAB code in
Appendix)
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7.5 Lotka-Volterra Model

In Chap. 4 we introduced the Lotka-Volterra model to study predator-prey interac-
tions, see Eq. (4.26). In particular, we used the model to analyze the interactions
between populations of sharks and tuna. In this section, we revisit the Lotka-Volterra
model with the perspective of studying the effects of delay. Thus, consider the fol-
lowing model

dx

dt
= x(t) [μ1 − ax(t) − by(t − r)]

dy

dt
= y(t) [μ2 − cx(t − r) − dy(t)] .

(7.14)

Equilibrium solutions, (xe, ye), are solutions of the following system of equations:

x(μ1 − ax − by) = 0
y(μ2 − cx − dy) = 0.

(7.15)

Direct computation yields four equilibrium points:

(0, 0),
(μ1

a
, 0

)
,

(
0,

μ2

d

)
,

(
μ1d − μ2b

(ad − bc)
,

μ2a − μ1c

(ad − bc)

)
.

To study the stability of the equilibrium points, and for convenience, we rewrite
the model Eq. (7.14) as

dx

dt
= f1(x(t), y(t), x(t − r), y(t − r))

dy

dt
= f2(x(t), y(t), x(t − r), y(t − r)).

(7.16)

The linearization of Eq. (7.16) is given by:
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(
ż1(t)
ż2(t)

)
=

(
a11 a12
a21 a22

)(
z1(t)
z2(t)

)
+

(
b11 b12
b21 b22

) (
z1(t − r)
z2(t − r)

)
.

where

a11 = ∂ f1(xe, ye)

∂x
, a12 = ∂ f1(xe, ye)

∂y
, a21 = ∂ f2(xe, ye)

∂x
, a22 = ∂ f2(xe, ye)

∂y
,

and

b11 = ∂ f1(xe, ye)

∂x(t − r)
, b12 = ∂ f1(xe, ye)

∂y(t − r)
, b21 = ∂ f2(xe, ye)

∂x(t − r)
, b22 = ∂ f2(xe, ye)

∂y(t − r)
.

Applying these results to Eq. (7.14), we arrive at the linearization about an equi-
librium (xe, ye):

(
ż1(t)
ż2(t)

)
=

(
μ1 − 2axe − bye 0

0 μ2 − cxe − 2dye

) (
z1(t)
z2(t)

)
+

(
0 −bxe

−cye 0

)(
z1(t − r)
z2(t − r)

)
.

We attempt to find solutions of the form z(t) = ¸eλt , with z = (z1, z2)T . It is not
difficult to see that the resulting characteristic equation has the form:

det

[
μ1 − 2axe − bye − λ −bxee−λr

−cyee−λr μ2 − cxe − 2dye − λ

]
= 0.

This determinant can be simplified by making use of the equilibrium conditions
Eq. (7.15), which lead to

det

[−axe − λ −bxee−λr

−cyee−λr −dye − λ

]
= 0.

The determinant produces a characteristic polynomial:

p(λ) + q(λ)e−λ(2r) = 0,

where p(λ) = λ2 + (axe + dye)λ + adxe ye and q(λ) = −bcxe ye.
We can now apply Theorem 7.2 to investigate the stability properties of equilib-

rium points. In what follows, we focus on the positive equilibrium for specific cases
of parameter values. We will employ 2r for the role of r in the characteristic while
using Theorem 7.2.

Case I: Stable Positive Equilibrium
Let us consider the case where μ1 = μ2 = 2, a = d = 2 and b = c = 1 and study
the stability of the fourth equilibrium point, which becomes (xe, ye) = (2/3, 2/3).
In this case, the characteristic polynomial has the form
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(
λ + 4

3

)2

− 4

9
e−λ(2r) = 0.

If we let p(λ) = (λ + 4/3)2 and q(λ) = −4/9, then we find that p(λ) has a lead-
ing coefficient one,whileq(λ) = −4/9 is negative and constant. In addition, the roots
of p are−4/3 (twice), so they are real and negative, and |p(0)| = 16/9 > |q| = 4/9.
Thus, by Corollary 1 of the absolute stability Theorem 7.2 we can conclude that

(λ) < 0 for every root λ and all r ≥ 0. This implies that the equilibrium point
(2/3, 2/3) is asymptotically stable.

Case II: Unstable Positive Equilibrium
Let us consider the case where μ1 = μ2 = 2, a = d = 1 and b = c = 2. The fourth
equilibrium point is again (2/3, 2/3), and the characteristic polynomial is

(
λ + 2

3

)2

− 16

9
e−λ(2r) = 0.

If we let p(λ) = (λ + 2/3)2 and q(λ) = −16/9, then we find that p(λ) has
a leading coefficient one, while q(λ) = −16/9 is negative and constant. In addi-
tion, the roots of p are −2/3 (twice), so they are real and negative. However,
|p(0)| = 4/9 � |q(λ)| = 16/9. Consequently, one of the criteria of Corollary 1 of
the absolute stability Theorem 7.2 does not hold. Then, we can conclude that the
equilibrium point (2/3, 2/3) is unstable.

Case III: Delay-Induced Oscillations
Assume now:μ1 = 1,μ2 = −1, a = 1, b = 1, c = −2, d = 1. This choice of param-
eters yields a positive equilibrium point (xe, ye) = (2/3, 1/3). The characteristic
polynomial is (

λ + 2

3

)(
λ + 1

3

)
+ 4

9
e−λ(2r) = 0. (7.17)

If we let p(λ) = (λ + 2/3)(λ + 1/3) and q(λ) = 4/9, then we find that p(λ) has
a leading coefficient one, and all roots are negative. The polynomial q is constant,
but |p(0)| = 2/9 � |q(λ)| = 4/9. Hence, one of the criteria of Corollary 1 of the
absolute stability Theorem 7.2 does not hold. Then, we can conclude that the equi-
librium point (2/3, 1/3) is unstable.

We are interested in stability changes of the positive equilibrium that may lead to
small amplitude oscillations via a Hopf bifurcation. Those changes can only occur
when λ = ωi . Substituting into Eq. (7.17) we get

−ω2 + 2

9
+ ωi = −4

9
e−ω(2r)i .
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Separating real and imaginary parts we get

−ω2 + 2

9
= −4

9
cos (ω(2r))

ω = 4

9
sin (ω(2r)).

(7.18)

These last two equations lead to the following polynomial in ω:

w4 + 5

9
ω2 − 12

81
= 0. (7.19)

Solving this polynomial (first for ω2 then for ω), we find only one positive root
ω0 = 0.4041. We can then use Eq. (7.18) to write an expression for the critical value
of the delay, rc, that leads to small amplitude oscillations via Hopf bifurcations:

rc = 1

2ω0

⎡
⎢⎣tan−1

⎛
⎜⎝ ω0

ω2
0 + 2

9

⎞
⎟⎠ + π j

⎤
⎥⎦ , j = 1, 2, . . . . (7.20)

Observe that due to the periodicity of eiω(2r), there are infinitely many solutions of
the critical value rc. The parameters chosen for this example lead to a critical value
of the delay: rc = 2.13.

Figure 7.5 illustrates the solutions of the Lotka-Volterra model, with and without
delay. Two cases are shown, one where the delay is less than the critical value, i.e.,
r < rc, and one where the delay is greater than the critical delay value.

7.6 Logistic Growth Model with Multiple Delays

We will now analyze a mathematical model with two delays. As an example, we
consider the logistic growth model (studied in Chap. 4).

dx

dt
= μ x(t) [1 − a1x(t − τ1) − a2x(t − τ2)] . (7.21)

Equilibrium points are found by solving:

x (1 − a1x − a2x) = 0,

which leads to two equilibrium points, xe1 = 0, representing extinction of the pop-
ulation, and xe1 = 1. The linearization of the model Eq. (7.21) about any of these
equilibrium points yield
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Fig. 7.5 Time series solutions and phase portraits of solutions of the Lotka-Volterra model for
various values of a delay. At about rc = 2.125, the model undergoes a Hopf bifurcation that leads
to small amplitude oscillations. Parameters are: μ1 = 1, μ2 = −1, a = 1, b = 1, c = −2, d = 1

dy

dt
= −μa1y(t − τ1) − μa2y(t − τ2). (7.22)

We seek a solution of the form x(t) = ceλt , which leads to the following charac-
teristic equation:

λ + μa1e
−λτ1 + μa2e

−λτ2 = 0. (7.23)

Observe that the characteristic polynomial is already in the same form as in
Eq. (7.10) in Theorem 7.3, with a = μa1 and b = μa2. Applying this theorem we
can conclude that if a2 = 0, then a necessary and sufficient condition for all roots of
λ + μa1e−λτ1 = 0 to have negative real parts is 0 < τ1 < π//(2μa1).

Furthermore, a sufficient condition for all roots of Eq. (7.23) to have negative real
parts is a1τ1 + a2τ2 < 1/μ, and a necessary condition for the same is a1τ1 + a2τ2 <
π/(2μ).

Let us consider a specific case where: μ = 0.15, a1 = 1/4, and b = 3/4. Then
a necessary condition for all roots of Eq. (7.23) to have negative real parts is τ1 +
3τ2 < 41.88, while a sufficient condition for the same is τ1 + 3τ2 < 26.7. Figure 7.6
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Fig. 7.6 Computer simulations of a logistic growth model with two delays. (Left) For τ1 = 15 and
τ2 = 5, both solutions (with andwithout delay) converge towards a positive equilibrium. (Right) For
τ1 = 15 and τ2 = 10, only the solution of the model without delay converges towards the positive
equilibrium, while that of the model with delay shows small amplitude oscillations. Parameter
values for both cases are: μ = 0.15, a1 = 1/4, and b = 3/4. (MATLAB code in Appendix)

illustrates the solutions of the logistic model with two sets of delays. One where,
τ1 = 15 and τ2 = 5, whichmeets the necessary but not sufficient conditions. And one
where, τ1 = 15 and τ2 = 10, which do not meet neither the necessary nor sufficient
conditions for the existence of negative real roots of the characteristic polynomial.
Observe that in the former case, the solution (with and without delay) converge
towards the positive equilibrium xe2 = 1. But in the later case, only the solution of
themodelwithout delay approaches the positive equilibrium,while the solution of the
model with delay tends to oscillate. The source of these small amplitude oscillations
is a delay-induced instability via Hopf bifurcations. The analysis of this later case is
left as an exercise.

7.7 Nyquist Stability Criterion

Nyquist criterion is a graphical-based test for determining the stability of a feedback
control system. The test is based on the complex analysis work known as Cauchy’s
principle of argument. In this section, we review its application to study the roots of
the characteristic polynomial

p(λ) + q(λ)e−λτ = 0, (7.24)

which determines the stability of most time-delay differential equations.
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Fig. 7.7 Schematic diagram
of an input-output model

Mathematical Model
u(t) y(t)

Fig. 7.8 Schematic diagram
of a transfer function L(s)

U(s) Y (s)

7.7.1 Transfer Function

The transfer function of a mathematical model is a function that describes the rela-
tionship between the input, u(t), and the output, y(t), of the system being modeled.
Consider the following schematic diagram of an input-output process (Fig. 7.7):

For a mathematical model described by a continuous system of differential equa-
tions, the transfer function L(s) is defined as the ratio of the Laplace transform of
the model’s output, y(t), with respect to that of its input x(t), assuming zero initial
conditions. That is

L(s) = L(y(t))
L(u(t)) = Y (s)

U (s)
.

This relation is described, schematically, through Fig. 7.8.
The fundamental idea is that a transfer function is an equivalent way to mathemat-

ically describe the dynamics of a system. It contains the same information, including
stability properties, as the original ODE does. The only difference is that the infor-
mation contained in the transfer function is in the s domain as opposed to the time
domain.

Suppose, for instance, that the model is described by a differential equation of the
form

an y
(n)(t) + an−1y

(n−1)(t) + · · · + a0y(t) =
bmu

(m)(t) + bm−1u
(m−1)(t) + · · · + b0u(t).

Applying the Laplace’s transform to both sides of this equation we get

ans
nY (s) + an−1s

(n−1)Y (s) + · · · + a1Y (s) =
bms

mU (s) + bm−1s
(m−1)U (s) + · · · + b1U (s).

Solving for Y (s) yields the desired transfer function

L(s) = Y (s)

U (s)
= bmsm + bm−1s(m−1) + · · · + b1s + b0

ansn + an−1s(n−1) + · · · + a1s + a0
. (7.25)
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Fig. 7.9 Schematic diagram
of a closed-loop model with
negative feedback

L(s)
−

U(s) + Z(s) Y (s)

In the the case of differential equations with delay, we can think of the input
function as being a function of the delay, i.e., u = u(t − τ ). Then, L(u(t − τ )) =
e−sτ U (s), and Eq. (7.25) becomes

L(s) = bmsm + bm−1s(m−1) + · · · + b1s + b0
ansn + an−1s(n−1) + · · · + a1s + a0

e−sτ . (7.26)

If we let y(t) = ceλt and u = y(t − τ ) = ceλ(t−τ ), then direct computations show
that Eq. (7.26) can be written as

L(s) = q(s)

p(s)
e−sτ , (7.27)

where p and q are the polynomials that make up the characteristic polynomial
Eq. (7.24).

We wish to determine whether or not an equilibrium of a delay differential equa-
tion, with characteristic polynomial given by Eq. (7.24) is stable. To answer this
question, consider now a closed-loop system with negative feedback, as is shown in
Fig. 7.9.

Combining Y (s) = L(s)Z(s) and Z(s) = U (s) − Y (s) yields the transfer func-
tion

T (s) = Y (s)

U (s)
= L(s)

1 + L(s)
.

The roots of the numerator of T (s) are called the zeros of T (s), while the roots of
the denominator are the poles of T (s). Then, a critical observation is that the poles of
T (s) are also the roots of 1 + L(s) = 0, which is exactly the same as Eq. (7.24). This
means that the stability properties of a delay differential equation with characteristic
polynomial as in Eq. (7.24) can be inferred by asking whether the denominator of the
transfer function, T (S), has any zeros in the right-half of the s-plane. Nyquist was
able to answer this question by applying Cauchy’s principle of argument as follows.

7.7.2 Cauchy’s Principle of Argument

Let F(s) be an analytic function in a closed region of the complex plane s, shown
in Fig. 7.10 except at a finite number of points (namely, the poles of F(s)). It is also
assumed that F(s) is analytic at every point on the contour. Then, as s travels around
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Fig. 7.10 Cauchy’s
Principle of Argument. A
mapping s → F(s) encircles
Z = 3 zeros and P = 6
poles, so that N = −3

Re(s)

Im(s)

X

X X
X

X

X

F(s)

the contour in the s-plane in the clockwise direction, the function F(s) encircles the
origin in the (
F(s),�F(s))-plane in the same direction N times (see Fig. 7.10 ),
with N given by

N = Z − P, (7.28)

where Z and P stand for the number of zeros and poles (including theirmultiplicities)
of the function F(s) inside the contour.

This result can also be represented as

arg{F(s)} = (Z − P)2π = 2πN .

Now, finding the zeros of 1 + L(s) is equivalent to solving L(s) = −1 + 0 i ,
since the origin of 1 + L(s) corresponds to the point −1 + 0 i of the complex plane.
Thus, to solve L(s) = −1, one can apply Cauchy’s principle, while performing, first,
a mapping

s → L(s),

in which the path in s encircles the entire right half plane and then count the number
of encirclements of the point −1 + 0 i by L(s) in the clockwise direction. This
should yield the total number, N , of encirclements. But what we want is the number
of zeros, Z . Thus, we first find the number of poles, P , of L(s) and then apply
Cauchy’s Eq. (7.28) to solve for Z :

Z = N + P.

7.7.3 Examples

Example 7.2 Consider the simplest system with a time delay

dx

dt
= −x(t − τ ). (7.29)
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Fig. 7.11 Nyquist plot for
the transfer function (7.30).
MATLAB code can be found
in the Appendix
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The characteristic equation associated with this example is

λ + e−λτ = 0.

Thus, p(λ) = λ and q(λ) = 1. Then the transfer function L(s) becomes

L(s) = 1

s
e−λτ = 0. (7.30)

The Nyquist plot produced by the mapping s → L(s) is shown in Fig. 7.11. The
MatLab script for computing the transfer function is

L1 = tf(1,[1 0],'InputDelay',tau);

where the first input “1” represents the numerator of Eq. (7.30) and “” is the denom-
inator. The complete MATLAB code is in the Appendix.

There are no encirclements of the point −1 + 0 i , so N = 0. The only pole is at
s = 0, so P = 0 as well. Then the number of zeros of 1 + L(s) in the right half of
the s-plane is Z = 0. Hence, the trivial equilibrium x = 0 is asymptotically stable
for all values of τ .

Example 7.3 Let us consider Lotka-Volterra predator-prey model Eq. (7.14) with
the followingparameters:μ1 = μ2 = 2,a = d = 2 andb = c = 1.This combination
of parameter values is the same as in Case II analyzed earlier, in which we found
the nontrivial equilibrium (xe, ye) = (2/3, 2/3) to be asymptotically stable. We now
explore its stability properties through Nyquist criterion. Recall the characteristic
polynomial was found to be

(
λ + 4

3

)2

− 4

9
e−λ(2r) = 0,
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Fig. 7.12 Nyquist plot for
the transfer function (7.31).
MATLAB code can be found
in the Appendix
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which shows p(λ) = λ2 + 8/3λ + 16/9 and q(λ) = −4/9. The corresponding
transfer function, L(s), is

L(s) =
−4

9

s2 + 8

3
s + 16

9

e−λ(2τ ) = 0. (7.31)

The Nyquist plot produced by the mapping s → L(s) is shown in Fig. 7.12. The
MatLab script for computing the transfer function is

L1 = tf(-4/9,[1 8/3 16/9],'InputDelay',2*tau);

where the first input “-4/9” represents the numerator of Eq. (7.31) and “[1 8/3 16/9]”
is the denominator. The complete MATLAB code is in the Appendix.

There are no encirclements of the point −1 + 0 i , so N = 0. There are two
(repeated) poles at s = −4/3, so P = 0 aswell. Then the number of zeros of 1 + L(s)
in the right half of the s-plane is Z = 0. Hence, the trivial equilibrium x = 0 is
asymptotically stable, just as it was determined earlier.

Example 7.4 Let us consider now the case of delay-induced oscillations in the
Lotka-Volterra predator-prey model Eq. (7.14) with the following parameters: μ1 =
1, μ2 = −1, a = 1, b = 1, c = −2, d = 1. This combination of parameter values is
the same as in Case III analyzed earlier, in which we found the nontrivial equilibrium
(xe, ye) = (2/3, 1/3) to be asymptotically stable for 0 < τ < 2.13, and undergoes, at
τ = 2.13, a Hopf bifurcation that leads to delay-induced small amplitude oscillations

We now explore the stability properties through Nyquist criterion. Recall the
characteristic polynomial was found to be

(
λ + 2

3

) (
λ + 1

3

)
+ 4

9
e−λ(2r) = 0.
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Fig. 7.13 Nyquist plot for the transfer function (7.32).MATLABcode can be found in theAppendix

which shows p(λ) = λ2 + λ + 2/9 and q(λ) = 4/9. The corresponding transfer
function, L(s), is

L(s) =
4

9

s2 + s + 2

9

e−λ(2τ ) = 0. (7.32)

The Nyquist plot produced by the mapping s → L(s) is shown in Fig. 7.11. The
MatLab script for computing the transfer function is

L1 = tf(4/9,[1 1 2/9],'InputDelay',2*tau);

where the first input “4/9” represents the numerator of Eq. (7.32) and “[1 1 2/9]” is the
denominator. The completeMATLAB code is in the Appendix.When 0 < τ < 2.13,
there are no encirclements of the point−1 + 0 i , so N = 0. Figure 7.13(left) shows a
specific instance of the Nyquist plot for τ = 1. There are two poles, one at s = −1/3,
and one at s = −2/3, so P = 0 as well. We conclude that when 0 < τ < 2.13 the
number of zeros of 1 + L(s) in the right half of the s-plane is Z = 0.Hence, the trivial
equilibrium x = 0 is asymptotically stable. When τ ≥ 2.13, the Nyquist plot shows
one encirclement of the −1 + 0 i , so N = 1. Figure 7.13(right) shows a specific
instance of the Nyquist plot for τ = 2.3. The number of poles is still the same, i.e.,
P = 0. Hence there are now Z = 1 zero of the characteristic polynomial in the right
half of the s-plane. This means that the equilibrium (xe, ye) = (2/3, 1/3) is unstable,
just as it was previously determined.

7.8 Delay in the Coupled Fluxgate Magnetometer

While the mathematical models and related devices governed by bistable potential
functions may assume instantaneous coupling, in practice we must account for the
fact that even high-speed, high-precision, circuit components can introduce a delay
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in the coupling signal. Thus, in this section we investigate the behavior of a ring of
overdamped bistable systems with delayed nearest-neighbor connections. We con-
centrate on the CCFM system as the “test-bed” to study the effects of time delay in
generic formulations of coupled bistable systems. In this system, we have already
shown that, without delay, large-amplitude oscillations and nontrivial synchronous
equilibria can coexist near the onset of the oscillations. Our study shows that delay-
induced Hopf bifurcation occurs from the synchronous equilibria but, generically,
the small amplitude oscillations that appear are unstable. Thus, delay has the effect
of decreasing the size of the basin of attraction of nontrivial synchronous equilibria,
which in turn, makes the basin of attraction of the stable large-amplitude oscilla-
tions larger. Collectively, this is a positive effect because the sensor device depends
mainly on large amplitude oscillations, so a small delay can make it easier to induce
the device to oscillate on its own.

7.8.1 Model Equations with Multiple Delays

As a “test bed”, we use the model equations of a CCFMdevice with N fluxgates [11].
The results are, however, generic and applicable to all rings of overdamped bistable
units unidirectionally coupled. For N = 3 the model equations are

ẋ1(t) = −x1(t) + tanh (c(x1(t) + λx2(t − τ1) + ε)) ,
ẋ2(t) = −x2(t) + tanh (c(x2(t) + λx3(t − τ2) + ε)) ,
ẋ3(t) = −x3(t) + tanh (c(x3(t) + λx1(t − τ3) + ε)) ,

(7.33)

where τ1, τ2, and τ3, denote the corresponding delays in the connectivity scheme.
Recall that we are primarily interested in the case where λ < 0, which is a negative
feedback system.

The surface shown inFig. 7.14depicts the boundarybetween the basin of attraction
of the synchronous equilibria and the large amplitude periodic oscillations. Initial
conditions inside the pyramid-like shape are attracted to equilibrium points, while
those outside are attracted to the large-amplitude oscillations. Observe that the size
of the basin of attraction of the stable (nontrivial synchronous) equilibrium point gets
larger as initial conditions move away from the origin.

7.8.2 Conversion to Single Delay

Wenow return our attention to Eq. (7.33).Wemake the following change of variables
to create a single delayed term with τ = τ1 + τ2 + τ3

y1(t) = x1(t), y2(t) = x2(t − τ1), y3(t) = x3(t − (τ1 + τ2)).
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Fig. 7.14 Three dimensional surface defining the boundary between the basins of attraction of
equilibrium points and that of periodic oscillations for a coupled-core fluxgate magnetometer, see
Eq. (7.33), with τ = 0. Points inside the pyramid-like shape are attracted to synchronous equilib-
ria while those outside are attracted to a global branch of large-amplitude periodic oscillations.
Parameters are: c = 3, λ = −0.44, N = 3, ε = 0.0

The resulting system of equations is given by

ẏ1(t) = −y1(t) + tanh (c(y1(t) + λy2(t) + ε)) ,

ẏ2(t) = −y2(t) + tanh (c(y2(t) + λy3(t) + ε)) ,

ẏ3(t) = −y3(t) + tanh (c(y3(t) + λy1(t − τ ) + ε)) ,

where time is shifted for the second and third equations. For convenience (and greater
generality), we consider the system given by:

ẏ1(t) = −y1(t) + f1(y1(t), y2(t)),
ẏ2(t) = −y2(t) + f2(y2(t), y3(t)),
ẏ3(t) = −y3(t) + f3(y1(t − τ ), y3(t)),

(7.34)

where f1(y1(t), y2(t)) = tanh (c(y1(t) + λy2(t) + ε)), etc.

7.8.3 Stability Properties of Synchronous Equilibria

We now wish to investigate the stability properties of the synchronous equilibria of
the transformed system (7.34), which we denote by (ȳ1, ȳ2, ȳ3). The linearization
of the above system is given by:
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⎛
⎝
ẏ1(t)
ẏ2(t)
ẏ3(t)

⎞
⎠ =

⎛
⎝

−1 + a11 a12 0
0 −1 + a22 a23
0 0 −1 + a33

⎞
⎠

⎛
⎝
y1(t)
y2(t)
y3(t)

⎞
⎠ +

⎛
⎝

0 0 0
0 0 0
a31 0 0

⎞
⎠

⎛
⎝
y1(t − τ )
y2(t − τ )
y3(t − τ )

⎞
⎠ ,

where

a11 = ∂ f1(ȳ1, ȳ2)

∂y1
, a12 = ∂ f1(ȳ1, ȳ2)

∂y2
, a22 = ∂ f2(ȳ2, ȳ3)

∂y2
,

a23 = ∂ f2(ȳ2, ȳ3)

∂y3
, a31 = ∂ f3(ȳ1, ȳ3)

∂y1
, a33 = ∂ f3(ȳ1, ȳ3)

∂y3
.

Because we are primarily interested in the negative feedback system, ∂ fi/∂x j <

0 for i 	= j . As usual, we attempt to find solutions of the form y(t) = ¸eσt , with
y = (y1, y2, y3)T . It is not difficult to see that the resulting characteristic equation
has the form:

det

⎡
⎣

−1 + a11 − σ a12 0
0 −1 + a22 − σ a23

a31e−στ 0 −1 + a33 − σ

⎤
⎦ = 0,

which is easily solved by expanding the first column to give:

(σ + 1 − a11)(σ + 1 − a22)(σ + 1 − a33) − a12a23a31e
−στ = 0.

We are particularly interested in nontrivial synchronous equilibria of the form
(ȳ1, ȳ2, ȳ3) = (ȳ, ȳ, ȳ) so that a11 = a22 = a33 and a12 = a23 = a31. Note from
Fig. 6.24 that there are exactly two nontrivial synchronous equilibria (ȳ, ȳ, ȳ) and
(−ȳ,−ȳ,−ȳ). In both cases the characteristic polynomial reduces to:

(σ − A)3 = B3e−στ , (7.35)

where A = a11 − 1 and B = a12. Direct calculations show that 0 < a11 < 1 and
−1 < a12 < 0, so that −1 < A < 0 and −1 < B < 0. We are interested in stability
changes of the synchronous equilibria that may lead to small amplitude oscillations
via a Hopf bifurcation. Those changes can only occur when σ = ωi , and since the
left-hand side of (7.35) is a polynomial function, monotonically increasing in mag-
nitude and angle, then by the Argument principle of complex analysis, Eq. (7.35)
has a solution whenever B < A. To visualize this result, we can also solve (7.35)
graphically, first substituting σ = ωi to obtain:
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Fig. 7.15 Graphical representation of the solution set of Eq. (7.36)

(
A3 − 3Aω2

B3

)
+

(
ω3 − 3A2ω

B3

)
i = −e−ωτ i . (7.36)

The left-hand side of (7.36) represents a complex-valued curveC3(ω)parametrized
by ω while the right-hand side describes the unit circle in the complex plane,
parametrized also by ω and by the delay τ . For τ > 0, as ω increases (starting
at zero) the right-hand term traces the unit circle S1 clockwise starting at the point
(−1, 0), as is shown in Fig. 7.15(left).

Simultaneously, the left-hand curve C3(ω) traverses the complex plane counter-
clockwise starting at the point (A3/B3, 0). When B < A this starting point is in the
interval (0 < A3/B3 < 1, 0), and since the magnitude and angle of points traversed
along C3 are monotonically increasing, then there is a critical value ω∗ at which both
the circle S1 and C3 intersect. At ω = ω∗, the point of intersection on S1 corresponds
to a critical angle θc measured from the starting point (−1, 0). The critical delay τc
producing the Hopf bifurcation satisfies τc = θc/ω

∗. This critical delay corresponds
to the solution of (7.36) at the Hopf bifurcation. By the periodicity of eiωτ , there
are infinitly many solutions of (7.36), but other solutions produce larger values of τ ,
which are unstable. Analytically, ω∗ is the solution of

ω6 + 3A2ω4 + 3A4ω2 + A6 − B6 = 0.

When B = A, see Fig. 7.15(middle), the point (A3/B3, 0) has moved to (1, 0)
but the right-hand side term is still at (−1, 0), so as soon as ω increases the point
(A3/B3, 0) separates away from the circle due to the monotonic nature of C3, thus
there is no solution. Similarly, when B > A, Fig. 7.15(right), the starting point
(A3/B3, 0) is already separated from the unit circle and so there is no solution
either.
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Fig. 7.16 a Locus of Hopf bifurcation induced by delayed coupling in a ring with N = 3 over-
damped bistable systems governed by Eq. (7.37). b–dBasins of attraction of synchronous equilibria
for delay values labeled A, B, and C in (a), respectively. For small τ , both synchronous equilibria
and large-amplitude oscillations have reasonably large basins of attraction. As τ increases towards
the locus of the Hopf bifurcation, however, the equilibria lose stability, and consequently, their
basins of attraction shrink accordingly

7.8.4 Locus of Delay-Induced Oscillations

The locus of the delayed-induced Hopf bifurcation points ω∗, in parameter space
(λ, τ ), is shown in Fig. 7.16a. The rightmost point along this two-parameter boundary
curve corresponds to the condition A = B. The leftmost point is the Hopf bifurcation
point without delay, i.e., τ = 0. Substituting τ = 0 in (7.36) we can solve for ω,
which then yields the condition B = 2A for the Hopf bifurcation without delay.
Computational work conducted with the aid of DDE-BIFTOOL [12], a software tool
for the bifurcation analysis of delay differential equations, confirms that the delay-
induced oscillations exist in the region just above the locus curve. The oscillations
are, however, unstable. Figures 7.16b–d illustrate the contraction that occurs in the
basin of attraction of synchronous equilibria due to delay-induced instability.
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7.8.5 Generalization to Larger Arrays

Wenowconsider the general case of N (odd)fluxgates governedby an N -dimensional
system of coupled overdamped bistable units subject to delay:

ẋi (t) = −xi (t) + tanh (c(xi (t) + λxi+1(t − τi ) + ε)) , (7.37)

where i = 1, 2, . . . , N mod N . We perform a similar change of variables to create
a single delay term with τ = τ1 + · · · + τN :

y1(t) = x1(t), y2(t) = x2(t − τ1), . . . , yN (t) = xN (t − (τ1 + · · · + τN1)).

The resulting system of equations is given by

ẏ1(t) = −y1(t) + f1(y1(t), y2(t)),
ẏ2(t) = −y2(t) + f2(y2(t), y3(t)),
...

ẏN (t) = −yN (t) + fN (y1(t − τ ), yN (t)),

(7.38)

where f1(y1(t), y2(t)) = tanh (c(y1(t) + λy2(t) + ε)), etc. The linearization of
(7.38) with respect to the synchronous equilibrium solution (y1, . . . , yN ) =
(ȳ, . . . , ȳ), has the form

L =

⎡
⎢⎢⎢⎣

A B 0 . . . 0
0 A B . . . 0
...

Be−zτ 0 0 . . . A

⎤
⎥⎥⎥⎦ ,

where A = ∂ fi (ȳ, ȳ)/∂yi − 1 and B = ∂ fi (ȳ, ȳ)/∂y j , j 	= i . Again we are most
interested in the negative feedback systemwhere∂ fi/∂x j < 0 for i 	= j and N is odd.
The characteristic polynomial becomes (σ − A)N = BNe−στ , where σ represents
again the eigenvalues of the linearized matrix L . Substituting the Hopf bifurcation
condition σ = ωi , we get

(A − ωi)N

BN
= −e−ωτ i . (7.39)

The left-hand side of (7.39) defines again a curve CN (ω) that traverses the complex
plane counter-clockwise as ω increases from zero. This curve is similar to that of the
N = 3 case, with−1 < A < 0 and−1 < B < 0, except that now the starting point is
(AN/BN , 0).When B < A, this starting point is in the interval (0 < AN/BN < 1, 0)
and so there is a critical value ω∗ at which CN intersects the unit circle at θc, i.e., the
right-hand side of (7.39), so that the critical delay producing the Hopf bifurcation is
once again τc = θc/w

∗. The critical value ω∗ can be found analytically by noticing
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Fig. 7.17 Locus of Hopf bifurcation induced by delayed coupling in a ring with (left) N = 5 and
(right) N = 7 overdamped bistable systems governed by Eq. (7.37)

that both sides of (7.39) are complex-valued expressions, which are equal only when
their magnitudes and angles are identical, this produces the polynomial

(w2 + A2)N = B2N ,

whose solution ω∗ yields the desired eigenvalue for the delayed-induced Hopf bifur-
cation point. Once again, the solution vanishes when the point (AN/BN , 0) is at the
opposite end point (1, 0), which yields the condition B = A. Delayed-induced oscil-
lations terminate at a regular Hopf bifurcation from the synchronous equilibrium
with τ = 0. To find this bifurcation point we note that when τ = 0 the linearized
matrix L becomes cyclic, with the eigenvectors space spanned by

Vj = {[
v, ζ jv, ζ2 jv, . . . , ζ(N−1) jv

] : v ∈ R
}
,

where ζ = e2π/N . Direct calculations yield L · Vj = (A + ζ j B)Vj . Hence the eigen-
values of L|Vj are those of A + ζ j B = A + cos(2π j/N ) + Bi sin(2π j/N ). It fol-
lows that a Hopf bifurcation occurs when

B = − 1

cos(2π/N )
A. (7.40)

Notice that this expression yields the previously found condition B = 2A for the
special case when N = 3. Figure 7.17 shows the locus, in parameter space (λ, τ ), of
the delayed-induced Hopf bifurcation point for N = 5 and N = 7, respectively.

AUTO and numerical studies suggest that the delay-induced Hopf bifurcation
is unstable leading to almost all solutions beyond the Hopf point approaching the
large amplitude periodic orbit, making it a global attractor. However, we have not
performed rigorous center manifold analysis [13] to prove instability of the Hopf
bifurcation.
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In each of these two cases, i.e., N = 5 and N = 7, small amplitude oscillations
are found above the loci curves. A stability analysis conducted with the aid of DDE-
BIFTOOL shows the small-amplitude, delay-induced, oscillations to be unstable.
But this is good news for the coupled-core fluxgate magnetometer because the net
effect of the delay is essentially to increase the basin of attraction of the global
branch of large-amplitude oscillations between the two magnetization states of the
ferromagnetic materials. In other words, delayed coupling tends to enhance the basin
of attraction of the global branch of oscillations so that it becomes more robust to
induce a CCFM-based device to oscillate on its own.

7.9 Exercises

Exercise 7.1 (Logistic GrowthModel with Delay) Amodified version of the logistic
growth model, with a delay term added into the growth rate, was introduced around
1948 by G.E. Hutchinson [14]. The modified model is

dN

dt̃
= r N

[
1 − N (t̃ − τ )

k

]
,

where τ is the delay.

(a) Write a dimensionless version of the model by introducing the following change
of variables: x = N/k, t = t̃/τ . Note that this change of variables will lead to a
dimensionless model with a delay of exactly 1. Specifically:

dx

dt
= rτ x[1 − x(t − 1)].

Let μ = rτ , so that the time delayed is absorbed into one single parameter μ.
(b) Compute the equilibrium points of the latest dimensionless model.
(c) Study the stability properties of the equilibrium points.
(d) Find a critical value of μ that can lead to oscillations via Hopf bifurcation.
(e) Perform computer simulations to illustrate your results.

Exercise 7.2 (Periodic Breathing) A one-dimensional model with one-single delay
has been proposed to describe the dynamics of CO2 concentration, p(t), in the lungs

VL
dp

dt
= M − pV (p(t − τ )) − T (p),

whereVL is lung volume,M is the constant rate ofCO2 production due tometabolism,
V (p(t − τ )) is ventilation, processed through brain stems, which monitors CO2

levels in the blood. The delay τ represents the delay between the measurement of
CO2 levels and the time at which ventilation takes place. T (p) is a transfer function.
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(a) Assume pe to be an equilibrium point. Perform a stability analysis about xe.
Note: you don’t need to know the explicit form of V (pe), or V ′(pe), just that
they represent themean ventilation and the chemoreflex gain, respectively. Thus,
assume V (pe) is known and T ′(pe) = βQ, where β is the solubility of CO2 in
the blood, and Q is the cardiac output.

(b) Let

μ1 = (V (pe) + T ′(pe))τ
VL

, μ2 = peV ′(pe)τ
VL

.

Determine the locus of a Hopf bifurcation in parameter space (μ1,μ2).

Exercise 7.3 (Specific Model of Periodic Breathing) Glass and Mackey [15] pro-
posed a specific model with one-single delay for periodic breathing

dC

dt
= λ − αVmC(t)

(C(t − τ ))n

θn + (C(t − τ ))n
,

where C(t) is the concentration of CO2 in the lungs at time t , V̇ (t) = (C(t))n/(θn +
C(t))n) is the rate of ventialtion, Vm , θ, n and α are constants.

(a) Compute all equilibrium points.
(b) Linearize the model equation and find the characteristic polynomial associated

with the equilibrium points.
(c) Study the stability of the model and determine a critical value of the delay, τc

that may lead to small amplitude oscillations via Hopf bifurcations.

Exercise 7.4 (Logistic Growth Model with Two Delays) Consider again the logis-
tic growth model with two delays, shown in Eq. (7.21), and rewritten in here for
completeness purposes:

dx

dt
= μ x(t) [1 − a1x(t − τ1) − a2x(t − τ2)] .

Determine the critical value of the delay τ = τ1 + τ2 that leads to small amplitude
oscillations via a Hopf bifurcation. Perform computer simulations to validate your
results.

Exercise 7.5 Consider the following system

u̇(t) = a1u(t) + b1v(t − τ2)
v̇(t) = a2v(t) + b2u(t − τ1).

Let y(t) = [u(t), v(t)]T represent a solution of the above equation. Perform a
stability analysis to show that

lim
t→∞ y(t) = 0,

if 
(ai ) < 0, i = 1, 2, and |b1b2| < 
(a1)
(a2).
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Exercise 7.6 Consider the simple delay equation

ẋ(t) = a − x
(
t − π

2

)
.

Set τ = π/2 and find an analytical exact solution on the interval t ∈ [−π/2, 0].
Study the behavior of the solution.

Exercise 7.7 Consider the following form of the logistic model

ẋ(t) = αx(t − τ ) (1 − x(t − τ )) .

(b) Calculate the equilibrium points of this model.
(c) Study the stability properties of the equilibrium points.
(d) Find a critical value of μ that can lead to oscillations via Hopf bifurcation.
(e) Perform computer simulations to illustrate your results for different values of

the parameter α.

Exercise 7.8 (Red Blood Cells Model) A mathematical model for the size of a pop-
ulation x(t) of mature red blood cells was proposed by Mackey-Glass [15], through

ẋ(t) = α
x(t − τ )

1 + xk(t − τ )
− βx(t),

where τ is thematuration timeof red blood cells,α,β, and k are positive constants. Let
α = 0.2, β = 0.1, and m = 10. Perform various computer simulations with delays
τ = 7, τ = 7.75, τ = 9.696, and τ = 12. Describe the results.

Exercise 7.9 (Wazėwszka-Czyzėwska and Lasota Model) Wazėwszka-Czyzėwska
and Lasota [16] proposed a model for the growth of blood cells, given by

dx

dt
− μx(t) + ρe−γx(t−τ ),

where x(t) represents the number of cells at any time t , μ is the natural death of the
red blood cells, ρ and γ are positive constants related to the recruitment term for the
red blood cells and τ is the time required for producing red blood cells.

(a) Conduct some numerical simulations with the following parameter values: ρ =
2, γ = 0.1, μ = 0.5 and τ = 5. Describe the results.

(b) Change the values of ρ, γ ∈ (0,∞) and μ ∈ (0, 1), and perform additional
numerical simulations. Describe the observed changes in the dynamics.

Exercise 7.10 Consider the following linear equation with one discrete delay

ẋ(t) = −ax(t) + bx(t − τ ).

Compute the equilibrium points and study their stability.
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Exercise 7.11 Consider now a system of two equations with one discrete delay

ẋ(t) = α1x(t) + β1y(t) + α2x(t − τ ) + β2y(t − τ )
ẏ(t) = γ1x(t) + δ1y(t) + γ2x(t − τ ) + δ2y(t − τ ).

Compute all equilibrium points and study their stability.

Exercise 7.12 (Neural Network Model with two Delays) Consider the following
neural network model with two delays

u̇1(t) = −u1(t) + a12 f (u2(t − τ2))
u̇2(t) = −u2(t) + a21 f (u1(t − τ1)).

(a) Assume f (0) = 0, so that (u1, u2) = (0, 0) is an equilibrium point. Compute
the linearization of the original model equations about the trivial equilibrium,
and write the characteristic polynomial associated with it.

(b) Determine the conditions that lead to a Hopf bifurcation, i.e., the critical value of
the delay τ = τ1 + τ2. Also, find the conditions that separate the first quadrant
of the (τ1, τ2) plane into two parts, one being a stable region, another being
unstable, and the boundary between them corresponding to the loci of Hopf
bifurcations.

Exercise 7.13 (Delayed-Food Limited Model) Gopalswamy et al. [17] introduced
the following delayed food-limited model

dx

dt
= r x(t)

[
k − x(t − τ )

k + rcx(t − τ )

]
.

(a) Write a description of the model.
(b) Let r = 0.15, k = 100, c = 1, and τ = 8. Calculate the equilibrium points and

determine their stability.
(c) Perform computer simulations and discuss the results. Conduct additional com-

puter simulations with τ = 12.8 and discuss the results.

Exercise 7.14 Consider Lotka-Volterra predator-prey model Eq. (7.14) with the fol-
lowing parameters:μ1 = μ2 = 2, a = d = 1 and b = c = 2.ApplyNyquist criterion
to determine the stability of the nontrivial equilibrium point (2/3, 2/3).

Exercise 7.15 (Delayed-Protein Degradation) A mathematical model for describ-
ing the production of proteins at any time is

dP

dt
= α − βP(t) − γP(t − τ ),

where P(t) is the concentration of proteins at time t , α is the rate of production of
proteins, β is the rate of nondelayed protein degradation, and γ is the rate of delayed
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protein degradation. The time delay τ is due to the fact that protein degradation
occurs after a time τ after initiation.

(a) Calculate the equilibrium points.
(b) Write down the characteristic polynomial associated with the linearization about

an equilibrium point.
(c) Compute the linearization of the model and study the stability of the equilibrium

points by applying the appropriate theorems. In particular, determine the critical
value of the delay, τc, that may lead to delay-induced oscillations.

(d) Apply Nyquist criterion to determine the stability of each equilibrium point.
Approximate the critical value of the delay, τc, that may lead to delay-induced
oscillations.

(e) Letα = 40, β = 0.3, γ = 0.1. τ = 20 and initial history 150. Perform computer
simulations and discuss the results. Repeat the simulations with: α = 100, β =
1.1, γ = 1. τ = 10 and initial history 20. Discuss the results.

Exercise 7.16 Consider the following delay differential equation:

dx

dt
= −x(t)3 − x(t − τ ).

(a) Calculate the equilibrium points.
(b) Write down the characteristic polynomial associated with the linearization about

an equilibrium point.
(c) Apply Nyquist criterion to determine the stability of each equilibrium point.

Exercise 7.17 (Fluxgate Magnetometer) Consider the following model of a single
fluxgate magnetometer subject to a delay

dx

dt
= −x(t) + tanh [cx(t − τ )]

(a) Calculate the equilibrium points.
(b) Write down the characteristic polynomial associated with the linearization about

an equilibrium point.
(c) Apply Nyquist criterion to determine the stability of each equilibrium point.

Exercise 7.18 (Gene Regulation) A negative feedback model for gene regulation is

dx1
dt

= gm

1 +
(
x2(t − τ )

k

)n − α1x1(t)

dx2
dt

= x1(t) − α2x2(t).

where x1(t) denotes intracellular mRNA and x2(t) represents the protein product of
the gene. The delay τ represents the time for mRNA to leave the nucleus, undergo
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protein synthesis in the ribosome, whereupon the protein reenters the nucleus and
suppresses its own mRNA production. gm , α1, α2, and k are parameters.

(a) Let gm = 1, k = 0.5, n = 3, α1 = α2 = 1, and τ = 0.5. Perform computer sim-
ulations and describe the results.

(b) Change the delay to τ = 3.5 and perform additional computer simulations.
Describe the observed changes.

Exercise 7.19 (IkedaModel for AbsorbingModel) A nonlinearmodel for an absorb-
ing medium with two level atoms in a ring cavity was proposed by Ikeda [18, 19] in
1979. Using Maxwell-Block equations, Ikeda derived the following model

dx

dt
= −x(t) + μ sin [x(t − τ ) − x0],

where μ and x0 are constants.

(a) Calculate the equilibrium points.
(b) Write down the characteristic polynomial associated with the linearization about

an equilibrium point.
(c) Study the stability of the equilibrium points by applying the appropriate theo-

rems.
(d) Apply Nyquist criterion to determine the stability of each equilibrium point.
(e) Let μ = 20, x0 = π/4, and τ = 5. Numerically solve the model and discuss the

results.

Exercise 7.20 (Allee Effect with Delay) Recall the Allee effect exercise from
Chap. 3. A continuous version with delay is

dx

dt
= x(t)[a + bx(t − τ ) − cx2(t − τ )],

where x(t) is the population density at time t , and the term in bracket represents the
per capita growth rate, a, b, and c are all positive real constants.

(a) Calculate the equilibrium points.
(b) Write down the characteristic polynomial associated with the linearization about

an equilibrium point.
(c) Let a = 1, b = 1, and c = 0.5. Study the stability of the equilibrium points by

applying the appropriate theorems. Determine the critical value of the delay, τc,
that may lead to delay-induced oscillations.

(d) Repeat part (c) by applying the Nyquist criterion.

Exercise 7.21 (Another Neural Network Model with two Delays) The following
system of delay differential equations serves as a model for a simple two-neuron
network
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du1(t)

dt
= −u1(t) + a1 tanh [u2(t − τ2)]

du2(t)

dt
= −u2(t) + a2 tanh [u1(t − τ1)].

(a) Compute the linearization of the model equations about the trivial equilibrium
(u1, u2) = (0, 0), and write the characteristic polynomial associated with it.

(b) If a1a2 < −1, then there exists a critical value of the delay parameter, τc > 0,
such that when 0 < τ = τ1 + τ2 < τc, the zero equilibrium solution is asymp-
totically stable and τc corresponds to a Hopf bifurcation point. Determine the
critical value, τc, by analyzing the characteristic polynomial.

(c) Repeat part (b) using Nyquist criterion.
(d) Let a1 = −2 and a2 = 1. Perform computer simulations of the dynamics for

τ < τc and τ > τc and verify the results obtained from the analysis.
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Chapter 8
Spatial-Temporal Models

It is now time to studymathematical models that depend simultaneously on space and
time. These spatio-temporal models serve to investigate phenomena such as reaction-
diffusion processes; population dynamics that include diffusion of species; vibrations
of a membrane; and pattern formation such as Turing patterns, which are driven by
diffusion instabilities. We also use this chapter to introduce Agent-based Models.
These type of models have gained much popularity in recent years. They are used to
describe emergent behavior based on a set of rules that govern howmultiple “agents”
or units interact with one another. For instance, bubbles in fluidization processes can
be treated as agents and the collective interactions can be described through a set of
rules that determines the mutual interaction between bubbles. In all the examples, we
develop quantitative and qualitative methods to study the conditions for the existence
and stability of spatio-temporal solutions.

8.1 Reaction-Diffusion Models

Let c(x, t) be the concentration of a species, e.g., cells, amount of chemicals, number
of animals, or heat along a one-dimensional region or interval I : x0 < x < x1. Later
on we will consider the case of higher dimensions. Let J (x, t) represent the amount
of material being transported, also known as the flux. According to Fick’s first law
of diffusion, the flux varies from regions of high concentration to regions of low
concentration. The rate of variation is, in fact, proportional to the concentration
gradient, i.e., spatial derivative. Mathematically, this means that

J ∝ − ∂c

∂x
.
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Fig. 8.1 Hemoglobin
molecules in red blood cells.
Source MedicineNet

In practice, the rate of variation of the flux depends on material properties. Thus,
if we let D = D(x, t) be the diffusion coefficient or diffusivity of a given material,
i.e., a measure of how efficiently the particles in the material disperse from areas of
high-density to regions of low-density, then the flux can be expressed as

J = −D
∂c

∂x
.

For references purposes, hemoglobinmolecules in red blood cells have a diffusion
coefficient of approximately, D = 10−7 cm2/s, see Fig. 8.1. And oxygen in blood
diffuses at a rate of D = 10−5 cm2/s.

Assuming, for right now, the absence of external sources of material production,
a conservation equation over the interval I : x0 < x < x1 can be established by
balancing changes in material with changes in the flux, as follows:

∂

∂t

∫ x1

x0

c(x, t)dt = J (x0, t) − J (x1, t) = −
∫ x1

x0

∂ J

∂x
dx .

This equation indicates that the rate of change of the amount of material (left
term) on the region I must be equal to the change in flux across I or rate of flow
across the boundaries. Combining left- and right-hand sides we arrive at an Integral
Conservation Law ∫ x1

x0

(
∂c

∂t
+ ∂ J

∂x

)
dx = 0. (8.1)
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This integral must be satisfied for arbitrary regions, yielding a Conservation Law

∂c

∂t
+ ∂ J

∂x
= 0. (8.2)

Applying Fick’s first law of diffusion to the flux J we arrive at the Diffusion
Equation

∂c

∂t
= ∂

∂x

(
D

∂c

∂x

)
. (8.3)

In practice, it is quite common for the diffusion coefficient D to remain constant
across the material. This particular case yields another common form a diffusion
model

∂c

∂t
= D

∂2c

∂x2
. (8.4)

Now, consider a 3D region V and let S be an arbitrary surface enclosing the
volume of space V . This timewewill assume, however, an external source ofmaterial
represented by f = f (c, x, t). Balancing again the changes in material with the flux
and the external source of material, we obtain an equivalent conservation equation

∂

∂t

∫
V
c(x, t)dv = −

∫
S
J · ds +

∫
V
f dv.

Assuming c to be a continuous function of x and t and applying the Divergence
theorem, we get ∫

V

[
∂c

∂t
+ ∇ · J − f (c, x, t)

]
dv = 0,

where

∇ · J = ∂

∂x
Jx + ∂

∂y
Jy + ∂

∂z
Jz .

Again, since the volume V is arbitrary, then the integrand in the above equation
must be zero. We then arrive at a conservation equation for c(x, t)

∂c

∂t
+ ∇ · J = f (c, x, t). (8.5)

In 3D, the gradient of the concentration can be written as ∇c. Then, applying
Fick’s first law of diffusion so that J = −D∇c, yields the first version of a Reaction-
Diffusion Model
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∂c

∂t
= f + ∇ · (D∇c), (8.6)

in which D = D(x, c). A space-dependent diffusion coefficient is quite common in
biomedical applications. For instance, in diffusion of genetically engineered organ-
isms in heterogenous environments. It is also found in studies of the effects of white
and grey matter in the growth and spread of brain tumors.

For a constant diffusion rate D we get the common form of a reaction-diffusion
model

∂c

∂t
= f + D∇2c, (8.7)

where ∇2c is the Lapacian of the concentration, i.e.,

∇2c = ∂2c

∂x2
+ ∂2c

∂y2
+ ∂2c

∂z2
.

8.1.1 Logistic Growth with Diffusion

In this section we revisit the logistic growth model with the addition of diffusion. We
show, computationally and analytically, that diffusion leads to solutions in the form
of traveling wave patterns.

Example 8.1 (Logistic Population Growth) Assuming a constant diffusion rate of a
“population” u(x, t), we can recast the Logistic Growth model of earlier chapters in
the form of a reaction-diffusion model

∂c

∂t
= rc

(
1 − c

K

)
+ D ∇2c. (8.8)

Observe that the reaction term is the standard logistic growth model with r repre-
senting the linear reproduction rate and k the carrying capacity of the environment.
In this case, it is more appropriate to interpret c as the population density instead of
concentration.

We know fromChap.4 that a solution to the logisticmodel (8.8) without diffusion,
i.e., D = 0, is given by

c(t) = c0Kert

K + c0(ert − 1)
,
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Fig. 8.2 Traveling wave solutions in the logistic growth model with diffusion. Parameters are:
D = 10, r = 1.0. Source Kandler and Unger [1]

where c(t = 0) = c0. When diffusion is added, numerical simulations of the
model (8.8) show [1], see Fig. 8.2, the existence of traveling wave solutions.

The simulations reveal that for an initial small population, especially smaller than
the carrying capacity, the population can grow until the carrying capacity of the
system is reached. This is reminiscent of the behavior without diffusion. But then,
once the carrying capacity is reached, the population saturates spatially and starts to
decrease towards a lower density while forming a spatial wave form. As time evolves,
the wave travel spatially. The decay and speed of the wave are both proportional to
the diffusivity coefficient D.

We now seek an analytic solution to the traveling wave patterns. But, first, it is
convenient to re-write the model equation in dimensionless form by letting

u = c

K
, τ = r t, x̃ =

√
r

D
x .

Substituting into (8.8) and simplifying (with relabeling x̃ as x), yields a dimen-
sionless version of the Logistic growth model with diffusion

∂u

∂t
= u(1 − u) + D ∇2u. (8.9)
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The traveling wave solution we are looking for can be written as

u(x, t) = U (x − st) = U (z),

where s > 0 is the assumed speed of the wave and z = x − st is a moving frame of
reference. This change of variables leads to the following relations

∂u

∂t
= −s

dU

dz
,

∂2u

∂x2
= d2U

dz2
.

Substituting into (8.9) we arrive at

d2U

dz2
+ s

dU

dz
+U (1 −U ) = 0. (8.10)

In this way, we have thus reduced the original PDE model (8.9) into a second-
order ODE model. The ODE is nonlinear but, nevertheless, we can investigate its
behavior using the techniques we learned earlier on. For instance, we can convert the
second-order model into a first-order system of ODEs by letting V = U ′, this yields

U ′ = V
V ′ = −sV −U (1 −U ).

(8.11)

Two equilibrium points are found along theU axis: (U, V ) = (0, 0) and (U, V ) =
(1, 0). The Jacobian matrix is

J =
[

0 1
−1 + 2U −s

]
.

At (U, V ) = (0, 0), the eigenvalues for J are

− s

2
± 1

2

√
s2 − 4,

while at (U, V ) = (1, 0), the eigenvalues are

− s

2
± 1

2

√
s2 + 4.

Consequently, it follows that (0, 0) is a stable spiral sink for s < 2 or a stable node
for s ≥ 2. The other equilibrium point, (1, 0), is always an unstable saddle for all
values of s > 0. Figure8.3 shows the corresponding phase portraits for 0 < s < 2
and s ≥ 2.

A stable spiral at (0, 0) implies that U (t) oscillates periodically as is shown in
Fig. 8.4(left). But from a biological standpoint, this solution makes no sense because
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u ' = v                
v ' = - s v - u (1 - u) s = 1
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Fig. 8.3 Phase space solutions of Eq. (8.11) with (left) s = 1 and (right) s = 3
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Fig. 8.4 Time series solutions of Eq. (8.11) with (left) s = 1 and (right) s = 3

asU (z) oscillates it acquires negative values which are inconsistent with population
sizes. Consequently, this solution has to be discarded.

Now, for s ≥ 2, (0, 0) is also stable but of a node type, i.e., there are no oscillations
into negative values ofU . Instead, the velocity field satisfiesV = du/dz < 0, which
shows the decay in the traveling wave profile as z → ∞. This is now shown in
Fig. 8.4(right). Consequently, we conclude that s ≥ 2 is a necessary condition for
the existence of a traveling wave solution. Finding an exact analytical solution to this
problem is beyond the scope of the present book.

8.1.2 Heat Equation on Circular Domain

A second example is a model that governs the evolution of heat over a circular
domain. The model is the Heat equation. In this problem, we apply some basic
techniques from the field of Partial Differential Equations (PDEs) to obtain complete
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analytical solutions. Then we use computer simulations to visualize the behavior as
time evolves.

Example 8.2 (Heat Equation on a Circular Domain)

∂u

∂t
= ∇2u, x ∈ Ω, t > 0, (8.12)

where u = u(x, t) and Ω represents some subregion within R
3. Later on we will

focus on a circular domain but for right now we consider any subregion. We assume
zero boundary conditions along the boundary ∂Ω and an initial (valid at t = 0) spatial
profile f (x). Together, these two conditions become

u(x, t) = 0, x ∈ ∂Ω,

u(x, 0) = f (x), x ∈ Ω.

We seek a solution to u(x, t) of the form

u(x, t) = T (t)X (x).

Direct substitution into Eq. (8.12) yields, after some rearrangements

T ′

T
= ∇2X

X
= −λ.

The first two terms arise from separating the two variables X and T . The last term
arises from the fact that two functions of two independent variables, X and T in this
case, can only be the same, at every value of the respective variables, if they are equal
and constant. Without loss of generality, the constant is assumed to be −λ but the
same results can be obtained with λ.

The zero boundary condition leads to

X (x) = 0, x ∈ ∂Ω.

To solve for X (x) we must solve the following Sturm–Liouville problem

∇2X = −λX, x ∈ Ω

X (x) = 0, x ∈ ∂Ω.
(8.13)

So far we have assumed any subregion Ω ∈ R
3, while the separation of variables

and Sturm–Liouville problem are valid for any general subregion. We now wish to
consider a 2D circular domain
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Ω = {(x, y) : x2 + y2 ≤ 1}.

Figure8.5 shows a polar grid over the circular domain.
Letting X (x) = v(x, y), the Sturm–Liouville problem can be written as

∂2v

∂x2
+ ∂2v

∂y2
= −λv, (x, y) ∈ Ω

v(x, y) = 0, x2 + y2 = 1.

For convenience and consistencywith the circular domain of the PDE, it is better to
work on polar coordinates: x = r cos θ , y = r sin θ , where 0 ≤ r ≤ 1 and−π ≤ θ <

π . Relabeling v = v(r, θ), direct substitution and simplification yields the Sturm–
Liouville problem in polar coordinates

1

r

∂

∂r

(
r
∂v

∂r

)
+ 1

r2
∂2v

∂θ2
= −λv,

v(1, θ) = 0, −π ≤ θ < π

(8.14)

We now apply separation of variables again on the spatial components (r, θ) by
setting: v(r, θ) = R(r) Ψ (θ), which yields (after separation and simplification):

r
d

dr

(
r
dR

dr

)
1

R(r)
+ λr2 = −d2Ψ

dθ2

1

Ψ (θ)
= μ,

and the boundary condition becomes v(1, θ) = R(1)Ψ (θ) = 0. Since 	(θ) 
= 0 is
required for nontrivial solutions v(r, θ) to exist, then R(1) = 0. In addition, conti-
nuity of v(r, θ) and its derivative along the azimuthal direction θ require

v(r,−π) = v(r, π), vθ (r,−π) = v(r, π).

These two smoothness conditions translate into

Ψ (−π) = Ψ (π),
dΨ

dθ
(−π) = dΨ

dθ
(π).

And since we are assuming v(x, y) to be bounded on Ω , then R(r) must also be
bounded in 0 ≤ r ≤ 1. To summarize, to solve the Sturm–Liouville problem in polar
coordinates we must solve

d2Ψ

dθ2
+ μΨ (θ) = 0, (8.15a)

r
d

dr

(
r
dR

dr

)
1

R(r)
+ λr2 = μ, (8.15b)
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with boundary conditions

Ψ (−π) = Ψ (π), 	θ(−π) = 	θ(π).

We start by solving Eq. (8.15a) for 	(θ). We must consider three cases.

Case I. If μ < 0 then the roots of the characteristic polynomial associated with
Eq. (8.15a) are real-valued, ±√−μ. This yields a possible solution

Ψ (θ) = C1e
√−μθ + C2e

−√−μθ ,

where C1 and C2 are arbitrary constants. Applying the boundary conditions
	(−π) = Ψ (π) and 	θ(−π) = 	θ(π) yields C1 = C2 = 0. Thus, only the trivial
solution exists.

Case II. If μ = 0 then a solution to 	 is of the form 	(θ) = C1θ + C2. Boundary
conditions imply C1 = 0, so 	(θ) = C , where C is just an arbitrary constant.

Case III. The case of μ > 0 leads to a solution is of the form

	m(θ) = am cos(mθ) + bm sin(mθ),

where μ = m2, m = 0, 1, 2, . . ., am and bm are constant coefficients. Details of the
derivation of this solution re left as an exercise.

Next, we solve Eq. (8.15b), but first rewrite it as

r2
d2Rm

dr2
+ r

dRm

dr
+ (λr2 − m2)Rm = 0, Rm(1) = 0, |Rm(0)| < ∞.

This last equation is not exactly a Sturm–Liouville problem due to the boundary
condition at the origin r = 0, i.e., due to |Rm(0)| < ∞. Instead, it can be treated as a
“singular” version of a Sturm–Liouville problem. In particular, it can be shown that
the boundary condition X (x) = 0 for x ∈ ∂Ω associated with the equation ∇2X =
−λX , restricts λ > 0. Then, we can re-scale by s = √

λr , to arrive at the Bessel’s
differential equation of order m

s2
d2Rm

ds2
+ s

dRm

ds
+ (s2 − m2)Rm = 0. (8.16)

The general solution of Eq. (8.16) is

Rm(s) = cm1 Jm(s) + cm2Ym(s),
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where Jm(s) and Ym(s) are known, respectively, as the Bessel functions of the first
and second kinds [2]. Now, since Ym(s) is unbounded at s = 0 then cm2 = 0 in order
for the boundedness condition |Rm(0)| < ∞ to be satisfied. Thus, the solution for
Rm simplifies to

Rm(s) = cm Jm(s).

Additionally, the condition R(1) = 0 implies

Jm(
√

λ) = 0,

which, in turn, yields the eigenvalues: λmn = j2mn , where jmn represents the nth zero
of Jm(s). Substituting the solutions for Rm and 	m in v(r, θ) = R(r)Ψ (θ), we get

vmn(r, θ) = Jm( jmnr) (am cos(mθ) + bm sin(mθ)) .

As a final step, we must put together the solution for u(x, y, t) by considering the
differential equation for T (t):

T ′ = −λT .

The solution is straightforward:

Tn(t) = Tn(0)e
−λn t .

Then the solution for u = u(x, y, t) = T (t)X (x) can be expressed as

u(x, y, t) = e−λmntvmn(x, y) = e− j2mntvmn(x, y).

The linear superposition of all individual modes, i.e., solutions for each combi-
nation of m and n, yields the final solution:

u(x, y, t) =
m=∞∑
m=1

n=∞∑
n=1

e−λmnt Jm( jmnr) (am cos(mθ) + bm sin(mθ)) . (8.17)

Figure8.6 shows a few snapshots of the solution of the 3D Heat equation, recon-
structed using Eq. (8.17), at various values of time.

8.1.3 Vibrating Membrane on a Rectangular Domain

In this third example, we consider a model of the vibrations of a membrane on a
rectangular domain.
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Fig. 8.5 Polar grid for a 2D circular domain
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Fig. 8.6 Simulations of the solutions of the 3D Heat equation over a polar grid

Example 8.3 (Vibrating Membrane) We now consider the wave equation for mod-
eling and simulating the vibrations of amembrane over a rectangular domain through

∂2u

∂t2
= ∇2u, x ∈ Ω, t > 0, (8.18)

We assume the following boundary conditions:

u(x, t) = 0, x ∈ ∂Ω,

u(x, 0) = f (x), x ∈ Ω,

ut (x, 0) = g(x), x ∈ Ω.
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We seek a solution to u(x, t) of the form

u(x, t) = T (t)X (x).

Direct substitution into Eq. (8.12) yields, after some rearrangements

T ′′

T
= ∇2X

X
= −λ.

The first two terms arise from separating the two variables X and T . The last term
arises from the fact that two functions of two independent variables, X and T in this
case, can only be the same, at every value of the respective variables, if they are equal
and constant. Without loss of generality, the constant is assumed to be −λ but the
same results can be obtained with λ.

The zero boundary condition leads to

X (x) = 0, x ∈ ∂Ω.

To solve for X (x) we must solve the following Sturm–Liouville problem

∇2X = −λX, x ∈ Ω

X (x) = 0, x ∈ ∂Ω.
(8.19)

Observe that this is almost the sameSturm–Liouville problem as that of Eq. (8.13),
which was derived from the Heat equation. The only difference is in the set of
boundary conditions.

We now wish to consider a 2D rectangular domain

Ω = {(x, y) : 0 ≤ x < x0, 0 ≤ y < y0}.

Letting X (x) = v(x, y), the Sturm–Liouville problem can be written as

∂2v

∂x2
+ ∂2v

∂y2
= −λv, (x, y) ∈ Ω

v(0, y) = v(x0, y) = 0, 0 ≤ y ≤ y0

v(x, 0) = v(x, y0) = 0, 0 ≤ x ≤ x0.

(8.20)

Let v(x, y) = X (x) Y (y). Substituting into Eq. (8.19) and separating variables
yields

Y ′′

Y
+ λ = − X ′′

X
= μ.



376 8 Spatial-Temporal Models

The following step is left as an exercise. Solving for X (x) and Y (y) leads to

Xm(x) = am sin

(
mπx

x0

)
, μm =

(
mπ

x0

)2

, m = 1, 2, 3, . . .

Yn(y) = bn sin

(
nπy

y0

)
, νn =

(
nπ

x0

)2

, n = 1, 2, 3, . . .

Combining these two solutions we can write an expression for v(x, y) =
X (x) Y (y):

vmn(x, y) = cmn sin

(
mπx

x0

)
sin

(
bπy

y0

)
, m, n = 1, 2, 3, . . . ,

and the eigenvalues are

λmn = μm + νn = π2

(
m2

x20
+ n2

y20

)
.

Next we must solve the temporal part of the differential equation

T ′′ + λT = 0.

Since we already know that λ > 0 then the solution can be found immediately as

Tn(t) = αn cos
(√

λt
)

+ βn sin
(√

λt
)

.

A linear superposition of all individual modes yields the final solution

u(x, y, t) =
m=∞∑
m=1

n=∞∑
n=1

[
αnm cos

(√
λt

)
+ βnm sin

(√
λt

)]
sin

(
mπx

x0

)
sin

(
nπy

y0

)
. (8.21)

The actual values of αmn and βmn are found using the boundary conditions. This
task is left as an exercise. Figure8.7 shows a few snapshots of the solution of the
wave equation, reconstructed using Eq. (8.21), at various values of time.

8.1.4 Generalization to Higher Dimensions

The generalization of the reaction-diffusion model to higher dimensions is straight-
forward.Assumewehavemultiple interacting speciesu1, . . . um , eachof themdepen-
dent on the same spatial domain x.We can form a vector of densities or concentrations
�u,
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(a) (b) (c)

Fig. 8.7 Vibrating membrane on a rectangular domain. Source Wolfram alpha

�u =

⎡
⎢⎢⎢⎣

u1(x, t)
u2(x, t)

...

um(x, t)

⎤
⎥⎥⎥⎦ ,

where each species diffuses with its own coefficient Dii and diffusion across species
i and j is controlled by the coefficient Di j . Then the diffusion matrix D takes the
form

D =

⎡
⎢⎢⎢⎢⎢⎣

D11 D12 . . . D1m

D21 D22 . . . D2m

...
...

Dm1 Dm2 . . . Dmm

⎤
⎥⎥⎥⎥⎥⎦

.

Finally, we canwrite the reaction-diffusionmodel in higher dimensions as follows

∂ �u
∂t

= �f + ∇ · (D∇�u). (8.22)

We can now consider a two-species reaction diffusion model which can lead,
under certain conditions, to the formation of very interesting patterns.

8.2 Turing Patterns

Alan Turing, the British mathematician who became famous for braking German
cipher messages encoded by the Enigma machine, was also a philosopher and a
well-respected mathematician with strong contributions to the field of pattern form-
ing systems. In 1952, he wrote a seminal manuscript “The Chemical Basis of Mor-
phogenesis” [3], in which he suggested a rather novel idea for its time. Turing pro-



378 8 Spatial-Temporal Models

posed that under certain conditions, chemicals can react and diffuse in such a way
as to produce steady-state heterogeneous patterns [3]. To get some insight, consider,
for instance, a model of two reacting and diffusing chemicals, with concentrations
u(x, t) and v(x, t), given by

∂u

∂t
= f (u, v) + Du∇2u

∂v

∂t
= g(u, v) + Dv∇2v,

(8.23)

where x ∈ R
2 or x ∈ R

3. If the diffusion coefficients are identical (including zero),
the concentrations u and v are expected to tend to a linearly stable uniform steady-
state. Turing argued that, under certain conditions, the chemicals,whichTuring called
morphogens, can, however, form spatially inhomogeneous patterns if they evolve or
diffuse at different rates, i.e., when Du 
= Dv . If one of the concentrations acts as
an activator while the other acts as inhibitor then the mutual interplay between the
two can lead to nonuniform patterns, specially if they do not evolve or change at the
same pace.

Experimental validation of Turing patterns remained elusive for almost sixty
years. In 2008, two biologists at Nagoya University, Akiko Nakamsu and Shigeru
Kondo, reported the first experimental evidence of Turing patterns in zebra fish. Since
the markings on these type of fish develop from juvenile spots, Nakamsu and Kondo
used lasers to scar the spots of juveniles and then watch how they change or evolve
over time. Their observations, see Fig. 8.8, matched very well with predictions of
computer simulations of related reaction-diffusion models.

At the time, the suggestion of diffusion causing patternswas considered to be a rev-
olutionary and novel proposition because diffusion was considered to be a stabilizing
process. Nowadays, this phenomenon is known as diffusion driven instability and
it’s the underlying mechanism of the many patterns that can be observed throughout
nature, see Fig. 8.9.

8.2.1 Diffusion-Driven Instability

In this section we study, mathematically, the underlying mechanism that selects one
pattern over another in a diffusion-driven stability. We consider the model (8.23),
rewritten in vector form:

∂w
∂t

= F(w, μ) + D∇2w (8.24)
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Fig. 8.8 Diffusion drive
instability as an underlying
mechanism for patterns
found in nature. Source
https://www.wired.com

Fig. 8.9 Turing patterns
appear throughout nature.
Source https://www.wired.
com

where w = (u, v), F = ( f (u, v), g(u, v)), D = diag(Du, Dv), and μ represents a
vector of parameters.

Let w0 = (u0, v0) be a homogeneous equilibrium solution, so that

f (u0, v0) + Du∇2u0 = 0

g(u0, v0) + Du∇2v0 = 0.

Also, let w = w0 + δw, where δw is a spatio-temporal perturbation given by

δw =
∑
j

c j e
σ j t eik j ·x

https://www.wired.com
https://www.wired.com
https://www.wired.com
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Substituting into linearized system about w0 = (u0, v0) yields:

(J − k2j D − σ j I )w = 0, (8.25)

where k2j = �k j · �k j and

J =
(

fu fv
gu gv

)
(u0,v0)

.

Solving Eq. (8.25) yields:

σ 2 + ((Du + Dv)k
2 − fu − gv)σ + DuDvk

4 − (Dv fu + Dugv)k
2 + fugv − fvgu = 0.

(8.26)

8.2.2 Pattern Selection Mechanism

σ(k) predicts the growingwavemodes:Wei �k·�r eσ(k)t . That is, the steady-state (u0, v0)
is stable if both eigenvaluesσ1,2 ofEq. (8.26) havenegative real parts, i.e., if{σ1,2} <

0. But if both eigenvalues satisfy{σ1,2} > 0 then spatial modes with wave numbers
k will grow exponentially until the nonlinearities in the reaction kinetics bound this
growth.

To obtain the critical wave number at which the instability occurs, we first start
with the assumption that in the absence of diffusion the steady-state (u0, v0) must
be stable. So we must impose that {σ1,2} < 0. Then, if Du = Dv = 0, Eq. (8.26)
reduces to

σ 2 − ( fu + gv)σ + fugv − fvgu = 0.

From Chap.4 we know {σ1,2} < 0 if the following two conditions are satisfied

trace(J ) = fu + gv < 0, and det(J ) = fugv − fvgu > 0.

Thus these two conditions will guarantee the homogenous steady-state (u0, v0)
to be linearly stable, and they will restrict the region of parameter space where we
look for solutions of Eq. (8.26). Now, in the full model with diffusion, {σ1,2} > 0
in Eq. (8.26) if either

(Du + Dv)k2 − fu − gv < 0, or DuDvk
4 − (Dv fu + Dugv)k2 + fugv − fvgu < 0.

The first option cannot happen since Du, Dv > 0, so (Du + Dv)k2 > 0, and we
just imposed fu + gv < 0. Thus, the only possibility is for second option, which we
rewrite as
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p(s) = DuDvs
2 − (Dv fu + Dugv)s + fugv − fvgu,

where s = k2. Direct computations of p′(s) and solving p′(s) = 0 yields

k2c = 1

2

(
fu
Du

+ gv

Dv

)
.

Direct computations show p′′(s) > 0, so p(s) is concave up. Its minimum is

pmin = p(k2c ) = |J | − 1

4DuDv

(gvDu + fu Dv)
2.

The instability occurs at the bifurcation point (Dc
u, D

c
v) at which

1

4Dc
uD

c
v

(gvD
c
u + fu D

c
v)

2 = |J |,

so that pmin = 0. We can the re-write the critical wave number as

k2
c = Dc

v fu + Dc
ugv

2Dc
uD

c
v

=
√

|J |
Dc

uD
c
v

=
√

fugv − fvgu
Dc

uD
c
v

Thus, we have arrived at the following theorem.

Theorem 8.1 (Turing Instability) Consider a reaction-diffusion model of the form

∂u

∂t
= f (u, v) + Du∇2u

∂v

∂t
= g(u, v) + Dv∇2v.

Let (u0, v0) be a steady-state, homogeneous, solution. The conditions for the
formation of a spatio-temporal pattern via Turing instabilities are:

fu + gv < 0, (8.27)

fugv − fvgu > 0, (8.28)

Dv fu + Dugv > 0, (8.29)

(Dv fu + Dugv)
2 − 4DuDv( fugv − fvgu) > 0, (8.30)

where all partial derivatives are evaluated at the steady-state (u0, v0). If these con-
ditions are satisfied then the reaction-diffusion model will undergo a bifurcation at
the critical point (Dc

u, D
c
v), which satisfies

1

4Dc
uD

c
v

(gvD
c
u + fu D

c
v)

2 = fugv − fvgu,
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Fig. 8.10 Dispersion
relation

K
K
c

Re{λ(k)}

to a non-homogenous pattern with wave form given by Φk = eikc ·x. The function Φk

are also known as the eigenfunctions or eigenmodes.

Figure8.10 illustrates the relation between the sign of the real part of the eigen-
values as a function of the wave vector k. This relation is known as the dispersion
relation. It shows that at the bifurcation point, i.e, when

Re{σ(kc)} = 0,

a spatio-temporal pattern emerges inwhich the spatial mode thatmakes up the pattern
has a wave vector kc. In other words, the dispersion relation illustrates the selection
mechanism that leads to one particular pattern over many others.

8.3 The Brusselator Model with Diffusion

In Chap.5 we introduced the Brusselator model for describing an autocatalytic reac-
tion through a system of Ordinary Differential Equations (5.9). If we now consider
the effects of the spatial diffusion of the concentrations, the model equations can be
cast as a system of Partial Differential Equations (PDEs) of the form:

∂u

∂t
= κ1∇2u + (B − 1)u + A2v − ηu3 − ν1(∇u)2

∂v

∂t
= κ2∇2v − Bu − A2v − ηv3 − ν2(∇v)2.

(8.31)

In this revised form, the model Eq. (8.31) describes the evolution of two coupled,
diffusive spatiotemporal fields u(x, t) and v(x, t), where κ1 and κ2 are the diffusion
coefficients of the two linearly coupled fields. The cubic terms control the growth of
the linearly unstable modes.
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8.3.1 Linear Stability Analysis

We now conduct a linear stability analysis of the model (8.31) using the ideas laid out
in Sect. 8.2.1. Let w0 = (0, 0) be a homogeneous sol. and let w = w0 + δw, where
δw is a spatio-temporal perturbation given by

δw =
[

δu
δv

]
	nm .

Using the fact that ∇2	nm − ( jnm/R)2	nm and substituting into Eq. (8.31) gives

∂

∂t

[
δu(t)
δv(t)

]
=

[
m11 m12

m21 m22

][
δu(t)
δv(t)

]
,

where m11 = B − 1 − κ1( jnm/R)2, m12 = A2, m21 = −B, m22 = −A2 −
κ2( jnm/R)2. Then, the uniform state destabilizes to 	nm(r, φ) when the real
part of the eigenvalues are zero, which yields the following marginal stability curves

BM
nm = 1 + κ1

κ2
A2 + κ1

(
jnm
R

)2

+ A2

κ2

(
R

jnm

)2

. (8.32)

For a given value of A, the marginal stability curve Bnm reaches a minimum of

B0 = 1 + κ1

κ2
A2 + 2A

√
κ1

κ2
.

Figure8.11 illustrates some of the marginal stability curves evaluated at fixed
values of κ1 = −0.2, κ2 = 2, and A = 5.0. B and the radius of the domain R are
used as control parameters.

8.3.2 Simulations

Rotating states of a single cell obtained from the numerical integration of Eq. (8.31)
are presented in Fig. 8.12 along with the analogous experimental states. The chi-
ral asymmetry is demonstrated by contrasting Fig. 8.12a with Fig. 8.12b and also
Fig. 8.12c with Fig. 8.12d. The computed and experimental cell shapes are similar as
seen by comparing Fig. 8.12a, and also Fig. 8.12b and d.

A Fourier–Bessel expansion of the rotating cell confirms that the modes with
largest amplitude are	01,	11 and	21. The real coefficients z0m are constants of the
motion. The rest of the time-dependent coefficients can be computed as follows. We
assume the field u(x, t) to be smooth and vanishing on the boundary of a circular
domain of radius R. Then u can be expanded in a Fourier–Bessel series as
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Fig. 8.11 Marginal stability curves alongwhich the uniform state (u, v) = (0, 0) of the Brusselator
model (8.31) destabilizes to the Fourier–Bessel modes 	nm . The curves are evaluated for fixed
values of κ1 = −0.2, κ2 = 2, and A = 5.0. B and the radius of the domain R are used as control
parameters

a b

c d

Fig. 8.12 a Clockwise and b counter-clockwise rotating states of a single cell from the model,
and the analogous states (c) and (d) of the experiment. Observe the qualitative similarity of the cell
shape in the two cases. The parameters generating the rotating state are η = 2.0, ν1 = 0.5, ν2 = 1.0,
B = 6.8 and R = 1.35
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Fig. 8.13 Constant
time-dependent coefficients
associated with the one-cell
dynamic state of Fig. 8.12
confirm the cell is rotating
uniformly
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u(x, t) =
∞,∞∑

n=0,m=0

zn,m(t)	nm(r, φ) + c.c.,

where 	nm(r, φ) = Jn( jnmr/R)enφi , m >, n ≥ 0 and c.c. denotes the complex con-
jugate. Here Jn(r) is the nth order Bessel function of the first kind and αnm is its
mth nontrivial zero. znm(t) are complex coefficients, except for z0m which are real.
A similar expansion can be applied to v(x, t). The orthonormality and completeness
of the function {	nm} gives

znm = 1

πR2 J 2
n+1( jnm)

∫ 2π

0

∫ R

0
ru(r, φ)	̄nm(r, φ)dφ dr,

with the proviso that the coefficients are half of the value given when n = 0.

For the particular case of the cell pattern of Fig. 8.12, the amplitude of the coef-
ficients z11 and z21 is constant in time, see Fig. 8.13, which indicates that the state
undergoes uniform rotation.

8.4 A Model of Flame Instability

A generic example of a cellular-pattern-forming dynamical system is described by
the Kuramoto–Sivashinsky (KS) equation, which can be written in the form

∂u

∂t
= η1u − (1 + ∇2)2u − η2(∇u)2 − η3u

3, (8.33)
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Fig. 8.14 Some static patterns observed using a novel integration scheme. In Panel#1: 2-cell
pattern, observed for simulation radius R = 5.0; Panel#2: 3-cell pattern, R = 6.0; Panel#3: 6/1-
cell pattern, R = 10.0; Panel#4: 8/2-cell pattern, R = 12.0; Panel#5: 10/5/1-cell pattern, R =
14.5; Common simulation parameters: (η1, η2, η3) = (0.32, 1.00, 0.017)

where u = u(�x, t) represents the perturbation of a planar front (normally assumed
to be a flame front) in the direction of propagation, η1 measures the strength of the
perturbation force, η2 is a parameter associated with growth in the direction normal
to the domain (burner) of the front, η3u3 is a term that has been added to help stabilize
its numerical integration. �x ∈ Ω , where Ω is the domain of integration. Since we
are interested in cellular patterns, Ω is assumed to be a polar grid, as it appears in
Fig. 8.5. The KS equation describes the perturbations of a uniform wave front by
thermo-diffusive instabilities. It has been studied in different contexts, including the
existence of heteroclinic connections, by Cross and Hohenberg (1993), Armbruster,
Guckenheimer, and Holmes (1988), Holmes, Lumley, and Berkooz (1996), and by
Hyman and Nicolaenko (1986). Gassner, Blomgren, and Palacios (2007) have also
conducted numerical explorations of the effects of noise on theKSequation in various
regions of parameter space.

Figure8.14 shows five examples of stationary patterns observed through numer-
ical integration of the model (8.33). The computer simulations indicate a greater
tendency towards stationary states (as opposed to dynamic states). Stationary states
are patterns with petal-like cellular structures and well-defined spatial symmetries.
Dynamic states are patterns in which the cells move, either individually or in ring
configurations.

As the radius of the circular domain increases, the typical ordered state that appears
changes from a single ring of cells to concentric rings of cells. Occasionally, dynamic
states are also observed in the transition from one stationary pattern to another.

A linear stability analysis (see exercises) leads to the following marginal stability
curves

εnm(R) = 1 − 2

(
jnm
R

)2

+
(
jnm
R

)4

, (8.34)

where jnm are the zeroes of the Fourier–Bessel modes. Figure8.15 depicts a few of
the marginal stability curves.

A critical observation is the fact that beyond the curve, εnm , on increasing ε, the
uniform state u0 = 0 (uniform flame front) destabilizes and a cellular pattern with
the shape of the Fourier–Bessel mode, 	nm(r, θ), emerges. More importantly, the
marginal stability curves provide a tool to systematically search for the right type
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Fig. 8.15 Marginal stability curves associated with the Kuramoto–Sivashinsky model of flame
instability. The curves outline the stability domains where the trivial solution u0 = 0 (representing
a uniform flame front) bifurcates to Fourier–Bessel modes 	nm

of pattern, at least with the right number of cells. For instance, let’s assume we are
interested in finding a region where the evolution of a single-ring stationary pattern
with three cells, as is shown in Fig. 8.14 panel #2„ can be traced. Such region can be
found in a neighborhood of the minimum of the marginal stability curve ε31 shown in
Fig. 8.15. As the curved is crossed, on increasing R, a stationary pattern of three cells
with purely spatial D3-symmetry emerges via a symmetry-breaking bifurcation from
the O(2)-invariant trivial solution. Increasing R further, and upon crossing the left
edge of the shaded region, the three-cells pattern loses stability, the D3–symmetry of
the ring is broken, and a dynamic pattern of three cells rotating “almost” uniformly
and counter-clockwise bifurcates subcritically. Figure8.16 depicts a sample of snap-
shots of the space and time evolution of the u(r, θ, t) field obtained at R = 7.36.

Near R = 7.74, in particular, the cells repeatedly make abrupt changes in their
angular position while they rotate around the ring; in a manner that resembles a
hopping pattern. Figure8.17 depicts a few representative snapshots of the spatio-
temporal dynamics at R = 7.7475. Observe that changes in cell shape are more
noticeable. In fact, a hopping cell changes its shape more than the other two and
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Fig. 8.16 Ten sequential time (top index) snapshots of a dynamic state of three cells rotating
counter-clockwise, with small modulations, found in simulations of (8.33). Parameter values are:
ε = 0.32, η1 = 1.0, η2 = 0.013, and R = 7.36

Fig. 8.17 Space and time evolution of a three-cells hopping state found in simulations of (8.33).
The cells move nonuniformly and their shapes change periodically. Parameter values are: ε = 0.32,
η1 = 1.0, η2 = 0.013, and R = 7.7475

also appears more asymmetric. The hops are small in comparison with experimental
states but, up to a time-scale factor, the overall characteristics of the dynamics appear
to be in good agreement with experiments.

8.5 Pattern Formation in Butterflies

Gierer and Meinhardt [4] suggested the following set of equations as a model for the
activator-inhibitor dynamics that characterizes many reaction-diffusion systems
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f (u, v) = κ1 − κ2u + κ3u2

v(κ6 + κ7u2)
g(u, v) = κ4u2 − κ5v.

(8.35)

Sekimura et al. [5] combined Gierer-Meinhardt kinetics dynamics with diffusion
to arrive at the following model

∂u

∂t
= γ

(
a − bu + u2

v(1 + κu2)

)
+ ∇2u

∂v

∂t
= γ (u2 − v) + d∇2v,

(8.36)

after non-dimensionalizing the spatial variables, letting d = Dv/Du and re-scaling
time accordingly.

Explicit analytical solutions of steady-states are too cumbersome to compute.
However, they can be found numerically by solving the following systemof equations

a − bu + u2

v(1 + κu2)
= 0

u2 − v = 0.

Similarly, a linear stability analysis can be carried out numerically while looking
for parameter values that satisfy the following conditions

fu + gv < 0, fugv − fvgu > 0,

d fu + gv > 0, (d fu + gv)
2 − 4d( fugv − fvgu) > 0.

Madzvamuse et al. [6] have conducted a complete numerical exploration of the
model behavior and their work has produced the parameter values shown in Fig. 8.18
as guidelines for pattern-forming in a wide variety of species of butterflies.

Figure8.19 shows results of numerical simulations of the model (8.36) with
parameter values drawn from Fig. 8.18. The simulations are then mapped over the
wings of the butterflies for comparison purposes.

Thus far we have studied spatio-temporal behavior through PDE models. How-
ever, it is also possible for ODEs to exhibit spatial-temporal dynamics even though
they are not defined over extended domains. How can this be possible, would be an
obvious question to ask. The explanation is, however, straightforward. A system of
ODEs can be used to study collective or aggregate behavior. For instance, a single
ODE can serve to model the intensity of light emitted by a single firefly in reaction
to stimuli. If a large system of ODEs is then used to study the collective behavior of
thousands to fireflies then the solutions can form spatial-temporal behavior.

Another example consists of the motion of thousands of bubbles in fluidization
processes. Each individual bubble in a fluidization bed can be described by a single
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Fig. 8.18 Parameter values for Turing pattern-instabilities associated with a wide range of species
of butterflies

ODE while the interaction of thousands of bubbles is governed through a coupled
system of ODEs. The entire system evolves according to a predefined set of rules for
how the bubbles interact. This is an example of an agent based model. These type
of models have been gained popularity in recent years, as they can provide useful
insight into self-organization processes with relatively simple equations. We have
chosen the bubble dynamics as an example to introduce agent-based models. Next
we provide details.

8.6 Agent-Based Model of Bubbles in Fluidization

Fluidization is a process in which solid particles behave like liquid in a vessel due
to some constant flowing medium such as gas or air. Fluidization was introduced in
fluid catalytic cracking process to convert heavier petroleum cuts into gasoline in the
early 1940s as the first large scale commercial application. Today, fluidization pro-
cesses have many important industrial applications, especially in chemical fossil and
petrochemical industries where good gas-solid mixing is required. Typical industrial
applications include coal gasification, solid transportation, polymerization of olefins,
heat exchange, polyethylene synthesis, cracking of hydrocarbon, catalytic reaction,
water treatment, and nanotubes [7–10]. Figure8.20 depicts a schematic picture of a
large circulating fluidized combustor in Florida, in which upward blowing air lifts
solid fuels, providing a turbulent mixing of gas and solids.

The behavior of a fluidization process can have numerous regimes based on size
of fluidized bed, flowing medium, flow velocity, physical property of solid particles,
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(a) Trophonius (b) Planemoides

(c) Hippoccoonides (d) Cenea

Fig. 8.19 Computer simulations of the reaction-diffusion model (8.36) over a nonuniform grid.
Four different species are simulated and rendered on the right wing of each butterfly. For comparison
purposes, the left wing shows the original species. Courtesy of Anotida Madzvamuse

and operating conditions [10, 11]. Bubbling is an important phenomenon existing
in most fluidization processes in which bubbles are generated continuously, move
upward vigorously, coalesce and interact with flowing medium and particles [7]. In
the applications in chemical, fossil and petrochemical industries, excellent gas-solid
mixing are even achieved through bubbles that are spontaneously formed during
the fluidization processes. Therefore, it is necessary to have good understanding of
fluidization processes, especially of the bubble dynamics, to provide reliable control
mechanisms for the fluidization applications in industries.

The difficulty of modeling three phase gas-solid-bubble dynamics in a fluidized
bed liesmainly inmodelingbubbles due to their complexdynamical behaviors includ-
ing coalescence and splitting [12]. Determining the velocity is the essential part in
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Fig. 8.20 Application of a Circulating Fluidized Bed combustor to generate electric energy (cour-
tesy of DOE/NETL). Upward blowing air lifts solid fuels, providing a turbulent mixing of gas and
solids

modeling risingbubbles. In this section,we introduce a low-dimensional, agent-based
bubble model, Dynamic Interacting Bubble Simulation (DIBS), which focuses on
describingmain bubble-bubble interactions among rising bubbles based on empirical
observations and data fitting technique via imaging apparatus. We also summarize
other approaches for modeling bubbles and give critical reviews for these models
compared with the DIBS bubble model.

8.6.1 Fluidization Processes

A fluidized bed, regardless of its application, normally consists of a vessel that
contains solids and has a porous bottom plate for injecting flowing medium upward.
When theflow rate is low, theflowingmediumpercolates through the gaps amongpar-
ticles. The particles remain packed and are in a steady state as is shown in Fig. 8.21a.
As the flowing speed of themediumkeeps increasing and reaches a threshold atwhich
the forces from the flow exerted on the particles overcome gravitational forces, par-
ticles start to suspend in the flowing medium inside the vessel. Further increasing
the flowing speed will cause particles to behave like fluid, a state called fluidization
(see Fig. 8.21b). This threshold of flowing velocity for the carrying medium is called
the minimum fluidization velocity (Umf ). Many efforts have been made to find a
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Fig. 8.21 Fluidization Processes. a Fluidized bed is in a steady state when the upward flow rate,U ,
is less than the minimum fluidization velocity (Umf ). b Fluidization happens when the flow rate
crosses Umf . c When the flow rate reaches the minimum bubbling velocity (Umb), bubbles are
created and the fluidized bed exhibits three phases, bubbles phase, solid phase and gas (or liquid)
phase

formula for the correlation between minimum fluidization and physical properties
of the flowing medium and particles for the purpose of providing accurate design in
building a fluidized bed.

As the flow rate increases further towards a second threshold, called the minimum
bubbling velocity (Umb), bubble voids are formed thus creating a dramatical change
in the dynamics as bubbles move upwards vigorously and coalesce when bubbles
touch. Figure8.21c illustrates a fluidized bed with medium flow, moving particles,
and bubbles. This particular state is the bubbling fluidized regime and is the focus of
this section.

8.6.2 Bubble Dynamics

Davies and Harrison [13] presented in 1950 the following equation to model the
velocity of a free rising bubble in a bubbling fluidized bed

Vb∞ = (2/3)
√
gR, (8.37)

where g is the gravitational acceleration and R is the bubble diameter. Since then,
many attempts have been made for modeling bubble velocities. Earlier work focused
mainly on explaining bubble formation and the physical properties such as bubble
diameter, size and shape. Harrison and Leung [14], Zenz [15], and Caram and Hsu
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Fig. 8.22 Collected velocity data of a trailing bubble from imaging system and fitting curve from
Eq. (8.38) by Halow and Nicoletti. The final Eq. (8.39) used in DIBS model is empirically derived

[16] developed various models that described the growth of bubbles due to gas
injection at a single orifice. Nieuwland et al. [17] provided a complete review of
existing models in 1996. However, none of these efforts addressed the collective
behavior of bubbles nor the complete interactions, in space and time, which were
commonly observed in related experiments.

With the arrival of modern computers, scientists and engineers started to develop
computational models and numerical simulations of bubble dynamics. The CHEM-
FLUB software developed by Systems Science and Software Inc. in 1980 presented
one modeling approach to simulate gas and solids flow in fluidized gasifiers [18–
21]. In its approach, bubbles are treated as a continuum flow and thus the continuity
equation is applied to model the bubble column. Yet the complicated phenomena
of bubbles in bubbling fluidized bed, for example, the bubble-bubble interactions
including bubble coalescence, are missing in such a computational model.

In recent years, an imaging systemwas used on a bubbling fluidized bed to capture
bubble wake behavior that exerts some pulling force and accelerates the rise of a
trailing bubble. This is an additional velocity for a bubble that is trailing another
bubble and is related to the diameter of its leading bubble. Figure8.22 is a plot by
Halow and Nicoletti illustrating actual experimental data and fitting curve from the
following empirical formula for a trailing bubble:

Ub =
√√√√√

glb

2 +
(

A∗

1 − A∗

)2

[
1 + 3

(
Di−1

Sp

)2
]
, (8.38)



8.6 Agent-Based Model of Bubbles in Fluidization 395

where Di−1 is the diameter of the leading bubble and Sp is the distance between a
trailing bubble and its leading bubble.

In 1993, Halow and Fasching [22] further examined their fitting model. By com-
paring Eq. (8.38) with those by Farrokhalaee [23] and Lord [24], they suggested that
the square term be replaced by a cubic form. This established the bubble velocity
formula of Eq. (8.39) adopted by S. Pannala, C. S. Daw and J. S. Halow who later
developed the computational DIBS model [25] for bubble dynamics in bubbling
fluidized bed.

8.6.3 Computational DIBS Model

The DIBS model was introduced in 2004 by Pannala et al. [26]. In the DIBS model,
each bubble is treated as a single agent and is described by a low-order ordinary
differential equation (ODE):

∥∥∥∥dXi

dt

∥∥∥∥ = ‖Vi‖ =
√√√√√

gli

2 +
(

A∗

1 − A∗
i

)2

[
1 + 3

(
DLj

Xi− j

)3
]
, (8.39)

referring Fig. 8.23, Xi is the position, Vi is the velocity, li is the length of i th bubble,
A∗
i is the fraction of cross section area of i th bubble divided by testbed area, DLj is

the diameter of the leading bubble, and Xi− j is the distance between i th bubble and
its leading bubble, j th bubble.

In order to simulate the agent-based DIBS model, some important assumptions
need to be made. We list them all.

(i) If a bubble does not have a leading bubble, its equation will be the one having
no j related term, i.e. the cubic term, in Eq. (8.39).

(ii) Each bubble is spherically shaped if the diameter of the bubble is less than 85%
of the bed diameter. If the diameter of a bubble is larger or equal to 85% of the
bed diameter, the bubble will be cylindrically shaped with a hemispherical end
cap.

(iii) At any moment, the movement of a bubble is affected by its leading bubble
through a pulling force. A bubble j is called a leading bubble for a bubble i if j
has vertical position above i and has the shortest distance with the bubble i (See
Fig. 8.23).

(iv) Two bubbles coalescence when they touch in 3-dimensional space.
(v) When reaching testbed surface, a bubble disappears.
(vi) The bubble rise velocity given by Eq. (8.39) is relative to the solids flow in

fluidized bed.
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Fig. 8.23 The leading bubble j exerts a pulling force on a trailing bubble i . Bubble j is the leading
bubble for bubble i if bubble j is above bubble i and has the shortest distance between two bubble,
Xi− j

Notice that by assumption (iv) and (v), the number ofODEsvaries as the number of
bubbles changes with the fluidized bed. Thus it is very difficult to carry analytic study
of thismodel purely by looking at a cluster of coupled bubblesmodeled by Eq. (8.39).
On the other hand, the use of powerful computers allows such computational model
to be implemented numerically and simulated graphically. Figure8.24 is a modified
version of flowchart for the implementation of DIBS model originally designed and
implemented by Pannala et al. at Oak Ridge National Laboratory [25].

In assumption (i), the DIBS model stresses the influence of an immediate leading
bubble for bubble velocity. It is also worth mentioning that such approach were
sought in early 1970s by Orcutt and Carpenter [27] in 1971 and Allahwla [28] in
1975.

In the actual computational simulation, bubbles are generated periodically from
a fixed number of bubble injectors through a porous medium located at the bottom
of a fluidized bed. The bubble injection frequency will play an important role in
our bifurcation analysis. The initial critical values for the DIBS simulation are the
bed shape (either cylinder shape or a rectangular test bed), bed size, the number
and positions of bubble injectors, bubble injection frequency, minimum fluidization
velocity, and superficial velocity of the gas flow.

The operation to update locations of bubbles is to solve numerically Eq. (8.39)
for each bubble. The first order Euler method can be used with small value of time
step size in integral implementation to acquire better accuracy in finding numerical
solutions. After the positions of bubbles are updated, the program checks the bound-
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Fig. 8.24 DIBS Simulation Flowchart. The modified flowchart of computational simulation of
DIBS model with adaptive integration step size. The operation to update the locations of bubbles
is actually to numerically solve the ODE of Eq. (8.39)

ary condition in the sense that a bubble is bounced fully when it meets the side wall
of the vessel. The program then checks if there are coalescing bubbles by checking
if there are two bubbles that are physically in contact with one another. Bubbles that
touch in 3-dimensional space are merged into one bubble with volume equal to all
merged ones. Bubbles that surpass the top of the fluidized bed are removed from the
bubble computational array.

Bubbles are generated periodically in a real-time simulation in which the software
program checks at each loop if it is time to generate new bubbles. New bubbles are
formed with a fixed bubble diameter, or with an initial size related to gas velocity,
from the bottom of the fluidized bed and are then added into the bubble array. Each
bubble has an initial color that is changed once it passes a fixed observation point. If
there is a new bubble or bubbles passing the observation point, the passage time is
recorded for a bifurcation analysis.
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Fig. 8.25 Adjustable dt in DIBS Simulation. Adjustable ‘dt’ for ODE integration. Δt is the initial
fixed time step size. f is the bubble injection frequency. And dt is the adjustable time step size. An
extra integration step is taken at tn+1

After each computational loop, the time is advanced to next time step. Usually the
time step size is fixed in using finite difference method to find numerical solutions
of differential equation(s). However, we realized that the actual integration time step
size, dt , has to be adjusted in real-time to be able to run the simulation for evenly
distributed values of bubble injection frequencies (BIF) in a given interval. This is
because there would be limited choices of BIF values if the fixed value of ‘dt’ is
used due to the following relationship.

f = 1

N · dt (8.40)

where N is the number of time steps between two bubbles to be generated and
f is the bubble injection frequency (BIF). If a fixed Δt is used, the values of f
from Eq. (8.40) would not be evenly distributed on any given interval by varying
N as positive integers. To overcome this problem, a variable integrating time step,
dt , is used in actual implementation. The value of ‘dt’ is checked and adjusted as
needed in each loop as illustrated in Fig. 8.25. With this approach, values of BIFs for
the simulations can be evenly distributed in any given interval, thus allowing us to
carry bifurcation analysis for bubble dynamics in response to changes in injection
frequencies.

8.6.4 Bifurcation Analysis of Single-Bubble Injector

The goal of the bifurcation analysis is to seek a guide for engineering fluidized beds
through numerical simulation and data analysis on some identified key element(s).
To achieve this goal, some data analysis methods are needed to understand well the
expected nature of the dynamical information such as the generation and transmission
of information and self-organization into spatial-temporal systems.

To get insight into the bubble dynamics, we employ a simulated experimental
measurement. It consists of a hypothetical laser device that detects passing bubbles
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Fig. 8.26 Experiment with Single Bubble Injector. A schematic diagram depicts the devices for
detecting and recording the time of bubbles passing the observation point. The time interval between
two passing bubbles, Δt , is calculated offline to form a time series to which the bifurcation analysis
is carried for a single bubble injector case

and records time series for rising bubbles that pass through a fixed observation point
for a single injector case, as is depicted in Fig. 8.26.

Nguyen et al. [29] and Tufaile and Sartorelli [30, 31] successfully used this type
of measurement to study bubble-train dynamics. Notice that the actual formation of
bubbles is related to the physical properties of flow medium and minimum fluidiza-
tion velocity (Umf ). Therefore, reasonable BIF values for numerical simulations are
initially chosen from near 0 to 10Hz. Here nHz is defined to be n bubbles to be
generated per second by the simulated bubble injector.

The time interval Δti between bubbles passing through the laser detector is col-
lected and incorporated into a time series of crossing times. By eliminating the tran-
sients, a bifurcation diagram is constructed and shows complex bubble dynamical
behavior with fixed points, chaotic attractors, periodic solutions and intermittency
behaviors and these will be analyzed in detail later.

To capture the long term behavior, the program runs for a minimum 700s and in
some cases it runs up to 2400s. The computationally intensive jobs demand use of
high performance computing. Table8.1 shows the main parameters used during the
simulations.

An initial real-time visualization was developed using native graphic functions.
This first version of bubble visualization software which displays rich visual infor-
mation showing bubble movement (rising upward rapidly) and bubble coalescence.
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Table 8.1 Main parameters for computational simulation of bubbling fluidized bed using DIBS
model

Initial bed height 40.0 cm

Bed diameter 22.9 cm

Bed shape Circular

Superficial gas velocity 1.7127 cm/s

Bubble injection frequencies a 2000-point grid on (0, 10]

Initial bubble size 1.0 cm

Observation point 20.0 cm

Δt 0.001 s

Figure8.27 shows some snapshots of numerical experiments with different BIF val-
ues. A more sophisticated three-dimensional visualization display was developed
later to study the bubble dynamics with multiple bubble injectors.

A bifurcation diagram is constructed by varying the bubble injection frequency
( f ). The computationally based bifurcation analysis shows that the bubble dynamics
transits among different regimes such as fixed point, chaotic attractors and intermit-
tent behavior. For each BIF value, the DIBS simulation runs for 700s to record the
time series, {ti }, bubble passage time through a laser detector. The actual signals,
{Δti }, the time interval between two consecutive data points, are calculated offline.
The first 200 points of computed {Δti } are treated as transients and thus are discarded.
A bifurcation diagram is constructed by plotting the resulting time series against the
BIF values. This computational method has been widely used for constructing bifur-
cation diagram. One typical example is the bifurcation diagram for logistic equation
by Alligood et al. [32]. Figure8.28 shows the bifurcation diagrams from the DIBS
simulations. The diagram reveaks the following observations.

At low injection frequencies, bubbles in the fluidized beds are significantly sepa-
rate and the bubble-bubble interactions have very little impact on rising bubbles. Thus
bubbles rise as a streamwith almost fixed gap between two consecutive bubbles. This
results in afixedvalue in {Δti }. This demonstrates that the global dynamics is attracted
to a fixed point with low BIF values. As BIF value increases beyond f = 4Hz, bub-
bles start to coalesce and the global dynamics rapidly changes from a fixed point
to a region of quasi-periodic behavior that eventually becomes chaotic. The global
dynamics enters a more organized region of period-4 oscillation for 4.3Hz < f <

4.7Hz, roughly. After this region, the period-4 region bifurcates into a chaotic region
with four disjoint attractors. Near f = 5Hz, the dynamics again enters a region with
period-3 oscillation that changes into a period-2 orbit. The period-doubling bifurca-
tion then leads to a period-4 orbit.

Beyond f = 5.5Hz, the system displays intermittent behavior inwhich the under-
lying dynamics randomly changes between a high period orbit, period-6 and a chaotic
attractor.
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Fig. 8.27 Single Bubble Injector Simulations. Bubble simulations with various bubble injection
frequencies. The bubbles below the observation line (laser detector) are colored in blue and bubbles
passing the observation line are painted in red. The bed size is 20cm × 40cm. The initial diameter
of a bubble being injected from nozzle is 1cm. The observation point is right in the middle height
of the bed

8.6.5 Phase Space Embeddings

Phase space embedding is an important method in studying nonlinear time series. In
a deterministic system, the states of all future times are determined once an initial
state is given. Thus the idea of phase space reconstruction is to use a one-to-one and
continuous function, more precisely a topological mapping, to embed the one dimen-
sional time series from a deterministic dynamical process into a multi-dimensional
space to disclose the real manifold in which the dynamics takes place and to allow
prediction for future evolution of the dynamical system. A typical technical solution
is the method of delays. Assume {sn} is a given time series. New vectors are formed
by defining the delay coordinates as:



402 8 Spatial-Temporal Models

Fig. 8.28 Bifurcation Diagram of Bubble Dynamics. The bifurcation diagram of bubble dynamics
with the experiment configuration described in 4.3. As bubble injection frequency (BIF) is small,
the global dynamics is attracted to a fixed point. As BIF value goes beyond 4.0 to 10.0, the global
dynamics changes to chaotic region, period-4 oscillation, four separate chaotic attractors, periodic
oscillation, a region with intermittent behavior, and then into a region with nearly a fixed point

�s = (
sn−(d−1)τ , sn−(d−2)τ , . . . , sn

)
, (8.41)

where d is called the embedding dimension and τ is delay or lag.
The embedding theorems established by Taken [33] in 1981 and Sauer et al. [34]

in 1991 guarantee the existence of such d (when d is sufficient large) so that the time
delay embedding produces a true embedding from original time series to the space
Rd .

The embedding dimension d reveals there are d independentmeasurementswithin
a given time series. It is then naturally to ask how to find the minimum embedding
dimension as the existence of such numbers is guaranteed. The computationalmethod
adopted by this study to find the minimum embedding dimension is the false nearest
neighbor (FNN) method originally proposed by Kennel et al. [35] and was imple-
mented by Hegger et al. [36, 37] in their TISEAN software package. The FNN
method is based on the idea that neighboring points of a given point are also mapped
to neighbors in delay space by a true embedding. For a delay map with embedding
dimension d < dmin , such topological properties would no longer be preserved and
would produce false neighbors after mapping into to delay space.

In the DIBS model, the local dynamics of a single bubble injector will be dom-
inated by pairwise interactions between leading and trailing bubbles. The bubble
stream also tends to collapse toward the bed center as the bubbles rise. This should
tend to reduce the effective local dynamical dimension considerably. Based on these,
it is reasonable to expect the crossing dynamics to be described by a map of the
form Δtn+1 = G(Δtn,Δtn−1) for the time series from DIBM simulation. Namely,
the anticipated embedding dimension required to resolve the local dynamics to be
close to a value of d = 3. Figure8.29 shows the resulting plots after applying FNN
algorithm from TISEAN package for the time series from DIBS simulation with BIF
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Fig. 8.29 Estimation of embedding dimension through the false nearest neighbor (FNN) method,
which was implemented in the TISEAN software for the time series at f = 4.2. The plot shows that
a good estimate for the embedding dimension is d = 3. This is because there is a significant drop in
the percentage of false nearest neighbors when d changes from 2 to 3. The embedding dimension
d = 3 is empirically determined from this graph

value at f = 4.2Hz. Notice there is less than 0.1% change of the false nearest neigh-
bors when d changes from 3 to 4. It is then reasonable to assume that the required
embedding dimension to be d = 3. This result matches the expected embedding
dimension.

Proceedingwith an assumed dimension of d = 3, the time delaymap for theDIBS
model can be written as: ΔTn = (Δtn,Δtn−1,Δtn−2). Figure8.30 shows two time
series plots and their phase space embedding portraits for twoBIF values, f = 4.2Hz
and f = 4.6Hz. The phase portrait for f = 4.2 shows a successful embedding of
an attractor.

8.6.6 Model Fitting

With the embedding dimension to be d = 3, the embedding function from time
series to phase space is ΔTn = (Δtn,Δtn−1,Δtn−2). With the new embedded points
on the trajectory in phase space, a typical question would be to find an map, at least
computationally, to model the deterministic evolution of the new time series {ΔTn},
namely, to seek a nonlinear map ΔTn+1 = F(ΔTn) for the purpose of forecasting
future trajectory in phase space, eventually for original time series, as is depicted in
Fig. 8.31. Many nonlinear prediction models for time series have been studied since
early 1990s.Well-studiedmodels are global polynomialmodel fitting and local linear
model fitting. The resulting fitting map then can be used computationally to forecast
the future trajectory and to evaluate Lyapunov Exponent spectrum.
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Fig. 8.30 Time series plots and their corresponding phase portraits for the data from DIBS simu-
lations. Two pictures on left side are the time series plots for f = 4.2 and f = 4.6. The pictures on
the right side are the phase portraits using embedding dimension d = 3

Fig. 8.31 Model Fitting for
Dynamical System. The
phase space map, F , is the
fitting nonlinear map based
on embedded points from a
given time series. The map
can be used to forecast future
trajectory and to compute the
Lyapunov spectrum

The local linear model was introduced by Eckmann et al. [38] in 1986 and Farmer
et al. [39] in 1987. This model is first chosen to do model fitting for the time series
of the bubble dynamics. With the embedding vector as ΔTn = (Δtn,Δtn−1,Δtn−2),
both Tn and Tn+1 have same Δtn and Δtn−1. Thus it suffices to find a map f for the
last component such thatΔtn+1 = f (ΔTn). The simplified case leads to approximate
f by a linear function of the form f (ΔTn) = �an · ΔTn + bn . The vector �an and the
scalar bn are then found by minimizing:
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Fig. 8.32 Local Linear Fitting for Bubble Dynamics. The phase space map, F , is the fitting non-
linear map based on embedded points from a given time series. The map can be used to forecast
future trajectory and to compute the Lyapunov spectrum

M∑
i=1

‖Δtn+1 − �an · ΔTi − bi‖ (8.42)

where M is the total number of time delay vectors.
The TISEAN software provides two routines, onestep and nstep, that implement

local linear fitting algorithm for a given time series. The onestep takes input of time
series data and outputs the forecasted error with the local linear fitting model. The
important arguments in using the routine are the embedding dimension, delay and
neighborhood size. The routine, nstep, using the same inputs as those for onestep,
produces predicted trajectory that is computed by applying the fitting algorithm with
the given time series data. Detailed information to use TISEAN software can be
found in its online manual by Hegger et al. [40].

For the time series of bubble dynamics from DIBS simulation, the local linear
fitting works very well for a wide range of BIF values up to f = 5.55Hz. Figure8.32
shows the predicted trajectories (in black) of 2000 iterations and the input time series
from DIBS simulation (in green) at two representative values of BIF values at 4.2
and 4.8Hz.

Beyond f = 5.55Hz, where the system exhibits intermittency between periodic
orbits and chaotic attractors, both approximation methods, local linear fitting and
global nonlinear multivariate polynomial fitting, failed to produce adequate long-
term prediction.

8.6.7 Lyapunov Exponent

In Chap.3 we introduced Lyapunov Exponents as a measure of the future growth and
decay rate for a small initial perturbation. Recall the exponents to be a quantitative



406 8 Spatial-Temporal Models

measure for the sensitivity of a dynamical system on initial conditions, and for the
presence of chaotic behavior. For a discrete map, xn+1 = F(xn), and a given initial
state x0, the Lyapunov exponent is defined to be the log value for the divergence
between two trajectories with a small perturbation ε0 :

λ(n) = 1

n
ln

(‖ f n(x0 + ε0) − f n(x0)‖
‖ε0‖

)
(8.43)

By computing the Lyapunov exponents for the time series, {ΔTn} from DIBS
simulation, the divergence (or convergence) rates at which neighboring orbits on
each individual attractor, for each bubble injection frequency, can be quantified as the
time-passage dynamics evolves in time. Many computational algorithms have been
proposed for computing an estimate of Lyapunov exponent. The TISEAN software
package implements two main algorithms for computing Lyapunov exponent. One
is the algorithm to compute a Lyapunov exponent by Rosensetein et al. [41] and by
Kantz [42], independently, which test directly the exponential divergence of nearby
trajectories. Another algorithm is to compute the Lyapunov spectrum by estimating
the local Jacobians from a fitting model in embedding space. Unfortunately none of
these works well with the time series from the DIBS simulation due to the presence
of a fixed point when the bubble injection frequency is very small. To circumvent
these problems, we chose a simpler approach based on small perturbations. A small
perturbation can be achieved by delaying the bubble injection with a small time δt
at some time t1 in the DIBS simulation. An estimate of largest Lyapunov exponent
is computed by averaging the λn in Eq. (8.43), for the purpose of obtaining a more
statistically meaningful measure of Lyapunov exponent, with the formula:

λ = 1

N

N∑
i=1

λ(i) (8.44)

In practice, a small perturbation of δt = 0.05 generates very good results of Lya-
punov exponents for a wide range of injection frequencies, except for a small area
between 4.5 and 5.6Hz, as is shown in Fig. 8.33. Observe that the sign of the expo-
nent agrees with the attractor depicted by the bifurcation diagram. That is, for low
frequencies, the largest exponent is negative, indicating convergence towards the
fixed point, as is normally observed in laboratory experiments as well as in the DIBS
simulations. A positive Lyapunov exponent is indicative of deterministic chaotic
behavior in the passage-time dynamics.

For frequencies larger than f = 5.55Hz, the sign of the largest exponent ismainly
positive. In this region, however, the time-passing dynamics is not only chaotic but
rather intermittent, randomly switching between chaotic attractors and high-period
orbits.Observe also that the largest Lyapunov exponent is zero at the points of bifurca-
tion where the system dynamics changes behavior. The presence of the intermittency
in the bifurcation sequence is likely to be difficult to ever be observed experimen-
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Fig. 8.33 Lyapunov Exponents of Bubble Dynamics. Largest Lyapunov exponent of time-series
bubble dynamics for various values of injection frequencies. A positive exponent is indicative of
chaotic behavior in the system’s dynamics. Fixed points in time series match well with negative
Lyapunov exponents

tally because of the presence of parametric noise, e.g. from gas-flow turbulence or
granular particle flow.

8.7 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD), also known as Karhunen–Loève Decom-
position (KLD), is a well-known technique for determining an optimal basis for a
data set [43–48]. This section reviews the definitions and properties of POD decom-
position relevant to modeling spatio-temporal systems and discusses how themethod
can be applied to image data in order to separate spatial and temporal behavior. Addi-
tional properties and technical details of the POD decomposition can be found in
AppendixC.

Consider a sequence of observations represented by the scalar functions
u(x, ti ), i = 1 . . . M . The functions u are assumed to be L2 on a domain D which is
a bounded subset of Rn . The functions are parametrized by ti , which represents time
in this application. The (time) average of the sequence, defined as
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ū(x) = 〈u(x, ti )〉 = 1

M

M∑
i=1

u(x, ti ),

is assumed to be zero. The POD decomposition extracts time-independent orthonor-
mal basis functions, Φk(x), and time-dependent orthonormal amplitude coefficients,
ak(ti ), such that the reconstruction

u(x, ti ) =
∞∑
k=1

ak(ti )Φk(x) , i = 1, . . . , M (8.45)

is optimal in the sense that the average least square truncation error

εN =
〈∥∥∥∥∥u(x, ti ) −

N∑
k=1

ak(ti )Φk(x)

∥∥∥∥∥
2〉

(8.46)

is always a minimum for any given number N of basis functions over all possible
sets of orthogonal functions.

The functionsΦk(x), called empirical eigenfunctions, coherent structures, orPOD
modes, are the eigenvectors of the two-point spatial correlation function

r(x, y) = 1

M

M∑
i=1

u(x, ti ) u
T (y, ti ) (8.47)

8.7.1 Computational Implementation

POD decomposition can be generally applied to find the optimal basis of a data set.
To separate spatial and time behavior for a physical system, each point in the data set
should represent an observation of the spatial state of the system at a particular time.
POD decomposition is applied to the observations to find an optimal basis for the
spatial observations. The data set is projected on the resulting POD basis functions
to obtain the time behavior in much the same way as normal mode expansions
are used for partial differential equations. The POD technique is based purely on the
observations and thus has the advantage of not requiring knowledge of an underlying
model equation or normal modes.

In practice the state of a numerical model is only available at discrete spatial
grid points, and so the observations that form the data set are vectors rather than
continuous functions. In other words, D = (x1, x2, . . . , xN ), where x j is the j th grid
point and u(x, ti ) is the vector
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ui = [u(x1, ti ), u(x2, ti ), . . . , u(xN , ti )]T .

Experimental data also undergoes a discretization process when it is acquired for
processing. In the case of the combustion experiment, images of the flame front were
digitized to obtain the observations at different times. Each image is a w × h = N
array of pixels. A pixel is a scalar value in the range [0, 255]. An image can be
converted to a vector by ordering the pixel values in rowmajor form (e.g. pixel ( j, k)
in the image is stored in position n = j × w + k in the vector).

8.7.2 The Method of Snapshots

A popular computational technique for finding the eigenvectors of (8.47) is the
method of snapshots developed by Sirovich [47]. It was introduced as an efficient
method when the resolution of the spatial domain (N ) is higher than the number of
observations (M). The method of snapshots is based on the fact that the data vectors,
ui , and the eigenvectors Φk , span the same linear space (see [43, 47] for details).
This implies that the eigenvectors can be written as a linear combination of the data
vectors

Φk =
M∑
i=1

vk
i ui (8.48)

After substitution in the eigenvalue problem, r(x, y)Φ(y) = λΦ(x), the coefficients
vk
i are obtained from the solution of

C v = λ v (8.49)

where vk = (vk
1, . . . , v

k
N ) is the kth eigenvector of (8.49), and C is a symmetric

M × M matrix defined by [
ci j

] = 1

M
(ui , u j ),

where (·, ·) denotes the standard vector inner product,

(ui , u j ) = u(x1, ti )u(x1, t j ) + · · · + u(xN , ti )u(xN , t j ).

In this way an N × N eigenvalue problem (the eigenvectors of (8.47)) is reduced
to computing the eigenvectors of an M × M matrix, a preferable task if N � M .
Throughout the remaining of this section,M will denote the number ofmeasurements
of a laboratory or numerical experiment, and N will represent the maximum number
of POD eigenfunctions employed in a particular reconstruction of an experiment.
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Fig. 8.34 a Four snapshots
of a uniformly rotating
one-cell state produced from
simulations of Eq. (8.51); b
the time-average and (from
left-to-right and
top-to-bottom) the four most
energetic POD modes; c
reconstruction of the
dynamics using the four
most energetic POD modes

After computing the POD basis functions, the temporal coefficients ak(t), are
calculated by projecting the data set onto each of the eigenfunctions. This operation
is carried out using the inner product defined above, and it leads to

ak(t) = (u(x, t),Φk(x))

(Φk(x),Φk(x))
. (8.50)

Example 8.4 (FlameDynamics)We consider in this example the Brusselator model
of two chemical reactions, see Eq. (8.31). For completeness purposes, we re-write
the equations

ut = κ1∇2u + (B − 1)u + A2v − ηu3 − ν1(∇u)2

vt = κ2∇2v − Bu − A2v − ηv3 − ν2(∇v)2.
(8.51)

Numerical simulations of the Brusselator model have demonstrated the forma-
tion of both stationary and nonstationary states. These states emerge as a result of
symmetry-breaking bifurcations in which several spatial modes couple and compete
for existence. Recall that these equations describe the evolution of two coupled, dif-
fusive spatiotemporal fields u(x, t) and v(x, t), where κ1 and κ2 are the diffusion
coefficients of the two linearly coupled fields.

In order to simulate the circular geometry of the experimental burner, the inte-
gration of Eq. (8.51) is carried out in polar coordinates over a circular grid of radius
R. Small changes in the radius, R, can produce qualitatively different flame pat-
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terns. This observation leads us to consider the radius as a distinguished bifurcation
parameter.

Figure8.34 shows four snapshots of a single cell state simulatedwithEq. (8.51) for
parameter values (η = 2.0, ν1 = 0.5, ν2 = 1.0, κ1 = 0.2, κ2 = 2.0, A = 5.0, B =
6.8, R = 1.35). It consists of a single cell rotating clockwise that does not change
its shape. The POD decomposition of a complete period produces an O(2) invariant
time-average pattern, Fig. 8.34b and four PODmodes, Φ1, Φ2, Φ3 and Φ4, (depicted
from left-to-right and top-to-bottom, respectively).

A similar POD spectrum indicates that the first two modes, Φ1 and Φ2, capture
about 94% of the energy. Only two modes are necessary to reconstruct the dynamics,
and the remaining modes affect other aspects such as cell shape. Observe that nearly
100% of the energy is captured by the first four modes. The reconstruction with these
four POD modes is shown in Fig. 8.7c.

The details of the temporal behavior of the cell are extracted from the POD
projections. Figure8.8a shows phase plots of a1(t) vs a2(t), a3(t) vs a4(t) and a1(t)
vs a3(t). The first pair indicates the uniform rotation of the cell. The second pair
indicates a periodic oscillation at twice the frequency of the dominant pair. The plots
of the relative phases for each pair of POD modes shown in Fig. 8.8b confirm this
relationship.

Example 8.5 (BubbleDynamics)Withmultiple bubble injectors, the bubble dynam-
ics becomes more complicated. Bubble coalescence does not only happen in vertical
direction but occur in all directions. As bubble injection frequency increases, a large
number of bubbles are present in fluidized bed, moving upward and coalescing with
each other. To capture the bubble dynamicswithmultiple injectors, bubble dynamical
process is digitized into frames to construct a data matrix, see Fig. 8.35. To generate
one frame of data, a grid with pre-determined size is set on the projected rectangular
area. For each block inside the grid, the area covered by projected bubbles is com-
puted. Then the fraction of covered area versus the area of the block is evaluated and
is saved as the value for the block, or one component for the output vector of final
multi-dimensional time series.

When a fine grid is set to digitize the dynamical information, each small block
can be viewed as a pixel in the whole image. Each block value composes one cell
value in the matrix for a digitized video frame. Then the data in matrix is aligned
into one column in the final data matrix for POD analysis.

The computing power must be considered in choosing the grid size. Although a
finer grid may create more accurate digitized information, the resulting data matrix
can easily have the size beyond the computing capability of a computer. In the case
of a 22 × 70 grid, 3502 frames were collected from bubble simulation and the final
data matrix has the size of 1540 × 3520.

Numerical experiments are first conducted with nine (chosen as an example)
injectors that are sparsely distributed on the bottom plate with simultaneous bubble
injection mode. The motivation is based on intuition that the behavior of the bubble
dynamics should have similar patterns as those observed in a single bubble injector
case since nine injectors are sparsely distributed. Several data points are picked from
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Fig. 8.35 Digitization of Bubble Dynamics. A schematic diagram for constructing one frame of
digitized data for bubble dynamics. Rising bubbles are projected onto a plane. A grid is set on the
rectangle area and the data in each block of the grid is computed based on the area covered by
bubbles. A frame of digitized data is created and is aligned to form one column in the final matrix
for POD analysis

(0, 10] for BIF values to conduct our research. A 3D visualization for the DIBS
simulation is developed to monitor bubble dynamics in real-time simulation. The
top four images in Fig. 8.36 shows a group of snapshots from simulations with the
BIF values taken at f = 0.5, f = 3.5, f = 6.5 and f = 9.5Hz. Four pictures in the
bottom of Fig. 8.36 are the snapshots for the digitized frames with the chosen BIF
values.

Nine bubbles are generated simultaneously and move upward in parallel and
form a layer of bubbles in the testbed. With small BIF value, there is a large distance
between two layers of bubbles and thus there is no interaction or bubble coalescence
among bubbles. As BIF value gets to larger over a threshold around 1.0Hz, bubbles
start to interact with each other and coalesce. One common phenomenon with large
BIF value is the channeling in which bubbles tends to collapse into middle of the
testbed and thus form a channel. The pictures of the 3D visual display in the top of
Fig. 8.36 show such channeling behavior for BIF values at 3.5, 6.5 and 9.5Hz.

To carry POD analysis, a grid is used to digitize each frame in running the DIBS
simulation with multiple bubble injectors. A total of 3502 frames are collected for
each BIF value. This generates a data matrix of size 1540 × 3502 for each BIF value.
Our POD analysis program is encoded in Matlab and uses a built-in routine for SVD
decomposition. Figure8.37 shows the first eight modes obtained directly from the
simulations.

The energy distribution plots (not shown for brevity) indicate that it requires
at least 200 modes for f = 0.5 and at least 400 modes for f = 3.5, f = 6.5 and
f = 9.5 to capture 80% of the total energy.
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Fig. 8.36 Simulation and Digitization of Bubble Dynamics. DIBS simulations with nine bubble
injectors and their digitized frames. The images on the top are snapshots taken from the 3D real-
time visualization for bubble simulation with multiple injectors. The images in the bottom are
their corresponding images of digitized frames. The values in the matrix of a digitized frame are
normalized

8.8 The Symmetry Perspective

In Chap.5, Sect. 5.7, we introduced the idea of using the underlying group of sym-
metries of a model to directly predict its behavior, i.e., without using numerical
simulations or experiments. Later on, in Sect. 5.8 the concept of symmetry-breaking
bifurcations, and the relevant methods, were formalized. In particular, two types of
symmetry-breaking bifurcations were discussed, steady-state and Hopf bifurcations.
It turns out that the same theory, and same methods, can be used to study and predict
the emergence of patterns in spatial-temporal systems. The only difference is that
this time steady-state bifurcations will be associated with steady-state patterns and
Hopf bifurcations with patterns that change periodically (or quasi-periodically) in
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Fig. 8.37 POD modes of bubble dynamics. Plots of the first eight modes for the DIBS simulations
with 4 bubble injection frequencies. All modes form an orthogonal basis
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Fig. 8.38 Symmetries of a
triangle are described by the
dihedral D3 group

κ

ρ

space and time. As an example, we consider next the case of a pattern forming system
over a triangular domain.

8.8.1 Steady-State Bifurcation in a Triangular Domain

Consider, for instance, a pattern-forming system in a triangular domain. The triangu-
lar domain has symmetry group DN–the dihedral group of symmetries of an N -gon,
N = 3 in this case. The symmetry group D3 is generated by a rotation ρ by 2π/3,
and a reflection κ across the line that connects a vertex to the middle point of the
opposite side, just as is shown in Fig. 8.38.

In Chap.5, we discussed the concept of the representation of a group. Recall that
group elements themselves do not transform an object. Instead, they only describe the
abstract geometry of an object. The actual transformation of an object is done through
the matrices that are associated with group elements, i.e., the representation of the
group. A group will typically have many representations. Each representation will
lead to a new bifurcation problem. Andwhen the theory is applied to pattern-forming
systems, each representation will lead to the emergence of a new pattern with less
symmetry than that of the original domain, i.e., symmetry-breaking bifurcations of
patterns. We continue next with our example of a pattern-forming over a triangular
domain.

8.8.2 Irreducible Representations

The elements of the dihedral group D3 are: {e, ρ, ρ2, κ, κρ, κρ2}. Observe that each
element can be obtained through the combination of one or two other elements, ρ and
κ . For this reason, we can say that D3 is generated by {ρ, κ}. Two group elements,
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γ1 and γ2, in Γ are conjugate, or in the same class or conjugacy class if there is a
group element σ ∈ Γ , such that

γ1 = σ γ2 σ−1. (8.52)

For the group D3, one can verify that ρ2 = κρκ−1, so that ρ and ρ2 are in the
same conjugate class. Similarly, κ , κρ and κρ2 are all three in their own conjugate
class. Finally, the single identity element e is in its own conjugacy class since it
satisfies Eq. (8.52) for any σ ∈ Γ . In conclusion, D3 has three conjugacy classes.
This number determines the number of irreducible representations, see next theorem.

Theorem 8.2 The number of inequivalent irreducible representations of a finite
group Γ is equal to the number of conjugacy classes of Γ .

This last theorem means that D3 has three irreducible representations. To find
them, we now employ the following theorem.

Theorem 8.3 The sum of the squares of the dimensions di of the n inequivalent
irreducible representations of a finite group Γ , is equal to the order, |Γ |, of Γ . That
is

n∑
i=1

d2
i = |Γ |.

According toTheorem8.3, the only possibility for the groupD3 is for it to have two
one-dimensional irreducible representations and one two-dimensional irreducible
representation. Since the generators, ρ and κ are of order 3 and 2, respectively, this
means that the associated (1 × 1) matrices must satisfy

A3
ρ = 1, A2

κ = 1,

Thus, Aρ = {1,− 1
2 ±

√
3
2 i} and Aκ = ±1. The complex roots have to be ruled

out because (κρ)2 = e implies A2
κρ = 1, which cannot be satisfied. The only root

we can use is Aρ = 1, which combined with Aκ = ±1 yields two representations:
Aρ = 1 and Aκ = 1 leads to the trivial representation; Aρ = 1 and Aκ = −1 leads
to the alternating representation. The three representations of the group D3 are now
listed in Table8.2.

Table 8.2 Character table for the symmetry group D3

Rep. \ D3 e ρ ρ2 κ κρ κρ2

Trivial 1 1 1 1 1 1

Non-trivial 1 1 1 −1 −1 −1

Natural 2 −1 −1 0 0 0
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As for the natural representation, recall from Sect. 5.8 that this is a two-
dimensional representation given by six matrices {Ae, Aρ, Aρ2 , Aκ , Aκρ, Aκρ2},
where

Ae =
[
1 0

0 1

]
, Aρ =

[− 1
2 −

√
3
2√

3
2 − 1

2

]
, Aρ2 =

[ − 1
2

√
3
2

−
√
3
2 − 1

2

]
,

Aκ =
[−1 0

0 1

]
, Aκρ =

[
1
2

√
3
2√

3
2 − 1

2

]
, Aκρ2 =

[
1
2 −

√
3
2

−
√
3
2 − 1

2

]
.

8.8.3 Eigenmodes

We have emphasized throughout the text that each irreducible representation of the
group of symmetries Γ leads to a bifurcation problem of the form

dx

dt
= f (x, λ), (8.53)

where f is Γ -equivariant. That is,

Aγ f (x, λ) = f (Aγ x, λ), for all γ ∈ Γ.

Assume (0, 0) to be an equilibrium of Eq. (8.53), which undergoes a steady-state
bifurcation. From Chap.5, Eq. (5.11), we know the bifurcation condition to be

f (x, λ) = 0

fx (x, λ) = 0.

Next, we address each representation independently and attempt to derive the
mathematical model Eq. (8.53) associated with each case.

Trivial Representation

In this case, all matrices are +1, so that Γ -equivariance of f implies

1 · f (x, λ) = f (1 · x, λ).

In words, the trivial representation does not impose any restrictions on the form
of the vector field f (x, λ). Hence, a Taylor expansion around the zero equilibrium
(x, λ) = (0, 0) yields:

f (x, λ) = f (0, 0) + fx (0, 0) + fλ(0, 0)λ + 1

2
fxx (0, 0)x

2 + fxλxλ + 1

2
fλλλ2 + . . .
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Fig. 8.39 Solutions
predicted by trivial
irreducible representation of
the group D3

The first two terms vanish due to the bifurcation condition. Rescaling time by
τ = fλ(0, 0), and relabeling the time variable τ , we can rewrite the model equations
as

dx

dt
= λ + ax2(0, 0)x

2 + axλ(0, 0)xλ + aλ2(0, 0)λ2 + . . .

Now, if we consider the neighborhood of the equilibrium point (x, λ) = (0, 0)
to be |x | < ε and |λ| < ε2, where 0 < ε � 1, then the last equation can be written
(after a suitable re-scaling) as

dx

dt
= λ ± x2 + O(xλ, λ2, x3). (8.54)

We recognize Eq. (8.54) as the normal form for the saddle-node bifurcation of
Sect. 5.5, see Eq. (5.27). From the standpoint of a pattern-forming system, and under
the trivial representation, every point x is fixed by the group of symmetries D3. It
follows that the bifurcation branch must also share the D3-symmetry. This means
that the emerging pattern does not change, it is still the homogeneous pattern that
appears right before the bifurcation, as is shown in Fig. 8.39.

Alternating Representation
In the non-trivial representation, also known as the alternating representation, matri-
ces {Ae, Aρ, Aρ2} are +1, while matrices {Aκ , Aκρ, Aκρ2} are −1. The restriction
imposed on f by these three last matrices implies

− f (x, λ) = f (−x, λ).

It follows that f must be an odd function in x . A Taylor expansion of f , similar
to the previous case, yields the normal form associated with this bifurcation

dx

dt
= λx ± x3 + O(xλ, λ2, x3). (8.55)

Again, we recognize Eq. (8.55) as the normal form for the pitchfork bifurca-
tion, see Eq. (5.29). The “+” case corresponds to a subcritical pitchfork bifurcation
and the “−” one to a supercritical pitchfork bifurcation. The pattern solution that
emerges from this bifurcation must remain unchanged under rotations by matrices
{Ae, Aρ, Aρ2} because these matrices are all+1 under the alternating representation.
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Fig. 8.40 (Left) Pattern
solution predicted by the
alternating irreducible
representation of the group
D3. (Right) Lattice of
isotropy subgroup confirms
the emerging pattern has
Z3-symmetry, i.e., cyclic
rotations by multiples of
ρ = 2π/3

Z3

D3

This means that the isotropy subgroup, Σx , of the emerging pattern is equivalent to
the cyclic group of three elements, that is Σx = Z3. Similarly, the matrices associ-
ated with reflections, i.e., {Aκ , Aκρ, Aκρ2}, act as −1, thus sending the pattern to its
mirror image. If we represent+1 with a light gray color and−1 as a white color then
the bifurcation pattern would have the form shown in Fig. 8.40(left). On the right,
is the lattice of isotropy subgroup, which describes, schematically, the underlying
symmetry-breaking bifurcations that lead to the new pattern solution.

Natural Representation
To derive the mathematical model Eq. (8.53), under the natural representation of D3,
we will employ a little bit of invariant theory.

Definition 8.1 Let Γ be a compact Lie group acting on a vector space V . A real-
valued function f : V → R is Γ -invariant if

f (γ x) = f (x),

for all γ ∈ Γ and x ∈ V .

Under the natural representation, the action of the elements γ of the groupΓ = D3

on C, are given by
ρ · z = e2π i/3z

κ · z = z̄.
(8.56)

Thus, we need to find a function f that will remain D3-invariant under the action
above. It is easy to check that {zz̄, z3 + z̄3} is a basis for all D3-invariant functions
under the natural representation. Details of the derivation will be left as an exercise.

Next, we need to consider mapping that commute with the action of the group of
symmetries.
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Definition 8.2 LetΓ be a compact Lie group acting on a vector space V . Amapping
f : V → V commutes with Γ or is Γ -equinvariant if

f (γ x) = γ f (x),

for all γ ∈ Γ and x ∈ V .

Similar calculations to those of theD3-invariants, yields a basis {z, z̄2}, for theD3-
equivariant mappings. And a few more calculations show that every D3-equivariant
polynomial mapping f : C → C has the form

f (z, λ) = p(zz̄, z3 + z̄3, λ)z + q(zz̄, z3 + z̄3, λ)z̄2, (8.57)

where p and q areD3-invariant real-valued polynomials. Hence, the model equations
(written in complex coordinates) for the bifurcation problem associated with the
natural representation can be expressed as

dz

dt
= p(zz̄, z3 + z̄3, λ)z + q(zz̄, z3 + z̄3, λ)z̄2. (8.58)

Of course, one can also re-write the model Eq. (8.58) by substituting z = x + yi
and solving for dx/dt and dy/dt . We leave this task as an exercise.

Now, observe that vertices of the triangle shown in Fig. 8.38 are mapped into each
other byΓ = D3.More importantly, the isotropy subgroup of a vertex on the real axis
is the subgroup Z2 generated by κ . Formally, Σx = Z2(κ). Since fix(Z2) = R then
we conclude that the bifurcation problem occurs along the line y = 0. The actual
pattern solution that emerges at the bifurcation is illustrated in Fig. 8.41.

Since fix(Z2) = R, we can set z = x , so Eq. (8.58) becomes

dx

dt
= p(x2, 2x3, λ)x + q(x2, 2x3, λ)x2.

Equilibrium points are found by solving

(p + qx)x = 0.

Fig. 8.41 (Left) Pattern
solution predicted by the
natural irreducible
representation of the group
D3. (Right) Lattice of
isotropy subgroup confirms
the emerging pattern has
Z2-symmetry, i.e., reflections
across the real axis

Z2(κ)

D3
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Fig. 8.42 One-dimensional
lattice

We recognize this last equation as the normal form for a transcritical bifurca-
tion, see Eq. (5.28). The nontrivial solution corresponds to p + qx = 0. In addition,
p(0, 0, 0) = 0 since there is a bifurcation of x = 0 at λ = 0. A Taylor series expan-
sion yields an expression for the bifurcating branch

λ = − q(0)

pλ(0)
x + . . .

Finally, this last expression shows that if q(0)/pλ(0) < 0 then the bifurcation
pattern with isotropy subgroupZ2(κ) is stable for λ > 0. Otherwise, if q(0)/pλ(0) >

0 then it is stable for λ < 0.

8.8.4 Traveling Wave and Standing Wave Patterns

It is also possible to use the theory of Hopf bifurcation with symmetry to predict the
emergence of periodic patterns that oscillate in space and time. In this section we
consider those type of patterns. The spatial domain will consist of a one-dimensional
lattice of the form as is shown in Fig. 8.42.

Mathematically speaking, the lattice can be defined as

L = {n · k1 : n ∈ Z},

where k1 = (1, 0). We are particularly interested in finding traveling waves, which
(to lower-order) can be written as

u(x, t) = z1(t)e
(x−t)i + z1(t)e

−(x+t)i + c.c. (8.59)

The term “c.c.” denotes complex conjugate and it is include to guarantee that the
pattern u(x, t) is real-valued. Both terms, e(x−t)i and e−(x+t)i are included in order
to capture all possible types of spatio-temporal patterns. The subspace (z1, z2) =
(z1, 0), in particular, accounts for a wave traveling to the right, in the direction of
positive values of x . Similarly, the subspace (z1, z2) = (0, z2) accounts for a wave
traveling in the opposite direction, i.e., to the left in the direction of negative values
of x . The case where z1 = ±z2 corresponds to a standing wave.

In all three cases, the waves should remain the same whether we look at the
positive x-axis or the negative one. That is, the lattice has reflectional symmetry

κ · x = −x .

Hoyle [49] shows that this reflection symmetry implies
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(z1, z2) → (z2, z1) (8.60)

Similarly, the lattice can be translated to the right or to the left by any amount p.
That is

p · x = x + p.

Again, Hoyle [49] shows that translation symmetry leads to the following action

(z1, z2) → (e−pi z1, e
pi z2). (8.61)

Observe that the actions described by Eqs. (8.60) and (8.61) are the same as those
of a Hopf bifurcation in a system with O(2)-symmetry. This type of symmetry-
breaking bifurcation was studied in great detail in Chap. 5, through the example of
flame dynamics on a circular domain, see Eq. (5.58). When the system is written in
Birkhoff normal form [50, 51], an additional symmetry under phase shift is intro-
duced. Together, the action of the O(2) group is given by

ρ · (z1, z2) = (e−ρi z1, eρi z2)

κ · (z1, z2) = (z2, z1)

θ · (z1, z2) = (eθ i z1, eθ i z2).

It can be shown that, to cubic order, the mathematical model that governs the
amplitudes of the oscillating waves is given by

dz1
dt

= μz1 − (α + βi)|z1|2z1 − (γ + δi)|z2|2z1
dz2
dt

= μz2 − (α + βi)|z2|2z2 − (γ + δi)|z1|2z2.
(8.62)

where μ, α, β, γ and δ are all real-valued parameters.
Figure8.43 illustrates a left-travelingwave and a standingwave found in computer

simulations of the amplitude equations (8.62). The waves are reconstructed using
Eq. (8.59).

8.9 Exercises

Exercise 8.1 Solve the Sturm–Liouville problem

d2Ψ

dθ2
+ μΨ (θ) = 0, Ψ (−π) = Ψ (π), 	θ(−π) = 	θ(π)
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Fig. 8.43 Computer simulations of amplitude equations (8.62) over a one-dimensional lattice show
a (Left) Left-traveling wave and (Right) Standing wave

when μ > 0.

Exercise 8.2 Consider the following version of the Brusselator model

∂X

∂t
= X2Y − (1 + β)X + α + DX∇2X

∂Y

∂t
= −X2Y + βX + DY∇2Y.

Find a nontrivial equilibrium solution and perform a linear stability analysis around
that equilibrium point.

Exercise 8.3 The Swift–Hohenberg Model on a Finite Line
The Swift–Hohenberg equation (1977) was originally proposed as a simplified

model of convective instability in a one-dimensional system. It takes the form

∂u

∂t
= [

μ − (∇2 + k2c )
2
]
u − u3. (8.63)

Assume k2c = 1 and the following boundary conditions

u = ∂2u

∂x2
, x = 0, L .

Study the stability properties of the homogeneous trivial solution u0 = 0 by per-
forming the following tasks:

1. Linearize (8.63) about u = u0: Set u = u0 + ũ and write the linearized equation
for ũ.

2. Solve linearized equation for ũ using separation of variables: Set ũ(x, t) =
G(t)φ(x), substitute and divide across by G(t)φ(x). Set separated variables to
a common constant σ and then solve the resulting eigenvalue problems for G(t)
and φ(x).



424 8 Spatial-Temporal Models

3. Compute marginal stability curves σn = 0 and study the behavior of the pertur-
bation for various values of n in the (μ, L) plane.

Exercise 8.4 Kuramoto–Sivashinsly Model.
Consider the Kuramoto–Sivashinsky equation without noise:

∂u

∂t
= η1u − (1 + ∇2)2u − η2(∇u)2 − η3u

3.

(a) Perform a linear stability analysis around the u = 0 equilibrium state.
(b) Compute and validate the marginal stability curves with those from Eq. (8.34)

in Sect. 8.4.
(c) Plot a few of the marginal stability curves as functions of the radius R.

Exercise 8.5 A rod of length 10 cm is kept at a temperature of 0 ◦C at one end and
at 100 ◦C at the other end. Assuming both ends are insulated, the model that governs
the temperature along the rod can be written as

∂u

∂t
= c2

∂2u

∂x2
, 0 ≤ x ≤ 10,

u(0, t) = 0, u(10, t) = 100.

(a) Find a steady-state temperature, us(x), by solving ∂2u
∂x2 with the initial conditions.

(b) Use the method of separation of variables to find a solution for the temperature
at time t , i.e., solve for u(x, t). Write a general solution as ug(x, t) = us(x) +
u)x, t).

(c) Assume that at some time t > 0, the temperature at x = 0 is raised to 20 ◦C,while
the temperature at x = 10 is decreased to 60 ◦C. Find a solution for ug(x, t).

Exercise 8.6 Schnakenberg (1979) Model.
Schnakenberg proposed the following kinematic-reaction model while searching

for a chemically sensible model that can capture, with a minimum number of terms
and equations, periodic behavior.

∂X

∂t
= κ4α − κ1X + κ3X

2Y + DX∇X2

∂Y

∂t
= κ2β − κ3X

2Y + DY∇Y 2.

(a) Rewrite the model equation in dimensionless form by finding a suitable change
of coordinates for X and Y as well a re-scaling of the time variable t .

(b) Calculate the unique nonzero or nontrivial equilibrium.
(c) Perform a linear stability analysis around the nontrivial equilibrium state.
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Exercise 8.7 Gray–Scott Model.
The Gray–Scott model describes two irreversible chemical reactions through the

following set of equations

∂U

∂t
= −UV 2 + κ1(1 −U ) + DU∇2U

∂V

∂t
= UV 2 − (κ1 + κ2)V + DV∇2V,

where κ1 and κ2 are reaction parameters and DU and DV are diffusion coefficients.

(a) Calculate the unique nonzero or nontrivial equilibrium.
(b) Perform a linear stability analysis around the nontrivial equilibrium state.

Exercise 8.8 Predator-Prey Model.
A spatially distributed predator-prey model introduced by Segal and Jackson [52,

53] has the form
∂X

∂t
= (k0 + k1X) − aXY + μ∇2X

∂Y

∂t
= bXY − mY − cY 2 + μ∇2Y,

where k0, k1, a, b, c, m, and μ are parameters.

(a) Consider the special casem = 0. Find an appropriate scaling of the state variables
X and Y to derive a dimensionless form

∂x

∂t
= (1 + kx)x − axy + δ2∇2x

∂y

∂t
= xy − y2 + ∇2y,

where k, a, and δ2 are to be determined constants.
(b) Calculate the nontrivial homogeneous steady-states.
(c) Show that the condition for diffusive instability is k − δ2 > 2

√
a − k.

Exercise 8.9 Consider the following model for a reaction-diffusion process

∂u

∂t
= r(a − u + u2v) + ∂2u

∂x2
∂v

∂t
= r(b − u2v) + D

∂2u

∂x2
,

where a, b and r are parameters.

(a) Calculate the nontrivial homogeneous steady state.
(b) Assume there is no diffusion. Then determine the stability condition of the homo-

geneous steady-state.
(c) Repeat part (b) but with diffusion.
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Exercise 8.10 Traffic Flow Model.
A mathematical model for traffic flow has the form

∂ρ

∂t
+ ∂(ρu)

∂x
= 0, (8.64)

whereρ = ρ(x, t) represents the density of cars, and u = u(x, t) describes the veloc-
ity of cars.

Assuming the velocity of cars is a constant, Eq. (8.64) becomes

∂ρ

∂t
+ u0

∂ρ

∂x
= 0.

Apply the method of characteristics to solve the traffic flow model with constant
velocity. Hint: the characteristics for this case are solutions of the ode

dx

dt
= u0.

Exercise 8.11 In a more realistic situation, one can assume that the velocity of cars
is a function of traffic density. Consider, for instance the case where the traffic flow
model becomes

∂ρ

∂t
+ u(ρ)

∂ρ

∂x
= 0.

Let u(ρ) = √
ρ and consider the initial condition: ρ(x, 0) = x , x > 0. Use the

method of characteristics to find a solution for ρ(x, t).

Exercise 8.12 Consider the following model of traffic flow

∂ρ

∂t
+ (x sin t)

∂ρ

∂x
= 0.

Assume initial conditions to be:

ρ(x, 0) = 1 + 1

1 + x2
.

Use the method of characteristics to solve for ρ(x, t).

Exercise 8.13 A homogeneous flexible string, of length L , in a guitar is stretched
between two end points, (0, 0) and L , 0). Assume the string to be initially pulled from
rest from a position μx(L − x). The mathematical model that governs the evolution
of the string is the wave equation:

∂2u

∂t2
= c2

∂2u

∂x2
, 0 ≤ x ≤ L , t > 0.

Find the displacement u(x, t) of the string of the guitar at time t .
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Exercise 8.14 Find all absolutely irreducible real representations of D4, the sym-
metry group of a square. Then, work out all the possible solutions that are guaranteed
at a steady-state bifurcation with D4 symmetry under one or other of these represen-
tations. Draw examples of the eigenmodes in an appropriate square box, and work
out the relevant normal form equations.

Exercise 8.15 Consider a coupled cell systemwith three identical cells coupled uni-
directionally, so that Z3–cyclic group of permutations of three objects–is the under-
lying group of symmetries. Analyze the Hopf bifurcation in the three-cell coupled
system, where the action of the group Z3 × S1 is given by

(e, θ) · z = eiθ z,
(ρ, 0) · z = −z,

where z ∈ C, (e, θ) is the phase shift and (ρ, 0) is the rotation of the cells by 2π/3.
Describe the spatio-temporal symmetry of emergent collective patterns of solutions.

Exercise 8.16 Repeat the previous exercise but now with a four-cell system. This
time, the action of the group Z4 × S1 is given by

(e, θ) · z = eiθ z,

(ρ, 0) · z = −z,

where z ∈ C, (e, θ) is the phase shift and (ρ, 0) is the rotation of the cells by π/2.

Exercise 8.17 Let p : C → R be a real-valued function expressed as

p(z) =
∑
α,β

aαβ z
α z̄β.

Apply the invariance conditions

p(z) = p(z̄)

p(e2π i/3z) = p(z)

p(z) = p(z), since pmust be real

imposed by the action of the D3 group given by Eq. (8.56) to show that aαβ ∈ R,
aαβ = aβα , and aαβ = 0 unless α = β mod 3.

Exercise 8.18 Let f : C → C be a complex-valued mapping expressed as

f (z) =
∑
α,β

bαβ z
α z̄β.

Apply the equivariance conditions
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f (e2π i/3z) = e2π i/3 f (z)

f (z) = f (z̄),

imposed by the action of the D3 group given by Eq. (8.56) to show that bαβ ∈ R, and
bαβ = 0 unless α = β + 1 mod 3.

Exercise 8.19 Write a MATLAB (or equivalent software) code to integrate the
amplitude equations (8.62) over a 1D grid of the form x ∈ [a, b]. For instance,
a = −50, b = 50. Turn in a copy of the code. Note: It’s easier and more convenient
to write the code using complex-valued variables, i.e., (z1, z2) ∈ C2.

Exercise 8.20 Illustrate the stability properties of traveling wave solutions (both
left-traveling and right traveling waves) and of standing waves obtained through
Eq. (8.62). To do this, assign appropriate values to parameters: (μ, α, β, γ, δ) and
initial conditions. For each case, plot the emerging pattern u(x, t), where:

u(x, t) = z1(t)e
(x−t)i + z2(t)e

−(x+t)i + c.c.
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Chapter 9
Stochastic Models

Many physical or biological phenomena often have stochastic or random effects,
such as Brownian motion or a birth event. These phenomena rarely are completely
deterministic, so cannot be accurately modeled with difference or differential equa-
tions. One method of introducing these variations into models is by adding some
type of noise, such as white and colored noise. This chapter examines stochastic
modeling methods, including methods from stochastic differential equations, and
the Fokker-Planck equation for describing the probability that a system is in some
state at a given time.

9.1 Definitions

In this section we introduce some basic definitions from probability theory and
stochastic processes relevant to modeling. We start off with the concept of a random
variable.

Definition 9.1 (Random Variable) A random variable, usually written X , is a vari-
able whose possible values are numerical outcomes of a random phenomenon.

The randomvariable is either discrete or continuous, which are stated in the following
definitions.

Definition 9.2 (Discrete Random Variable) A discrete random variable X has a
countable number of possible values.

Definition 9.3 (Continuous Random Variable) A continuous random variable X
takes all values in a given interval of numbers.
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For instance, rolling out a fair die can lead to six equally possible outcomes of
getting an integer number, i.e., a discrete random variable, which can take values
from one through six. An example of a continuous random variable would be the
life expectancy of a population of individuals from a particular country, in which
individuals are known to (typically) die between age X1 and age X2.

For probabilistic modeling one needs knowledge of how the random variables are
distributed. For the example of the fair die, we assumed that each integer between
one and six has the same chance of appearing as the outcome of rolling out a die.
Thus, each value from one to six has exactly the sixth chance of occurring in a given
roll. This information is encapsulated in the form of probability distributions.

Definition 9.4 (Probability Distribution) A probability distribution of a random
variable X indicates the possible values of X and how the probabilities are assigned
to those values.

For continuous random variables one needs the concept of a probability density
function.

Definition 9.5 (Probability Density Function) A probability density function, f (x),
of a continuous random variable is a function whose integral across an interval gives
the probability that the value of the variable lies within the same interval:

Pr{x1 ≤ X ≤ x2} =
∫ x2

x1

f (x)dx .

Note that for f (x) to be a probability density function, it must satisfy f (x) ≥ 0 for
all x and ∫ ∞

−∞
f (x) dx = 1.

Now that we know what a probability density function is, we can define the
concept of a probability space.

Definition 9.6 (Probability Space) A three-tuple (S, F, P), where S is the sample
space, F is the event space, and P is the probability function, is known as the
probability space.

In our running example of rolling a die, the sample space is S = {1, 2, 3, 4, 5, 6}.
The event space is the collection of subsets of S, which can be any singleton set, the
empty set, and the sample space S itself.

Phenomena that involve the operation of chance are also known as stochastic
processes. More formally, we have the following definition.

Definition 9.7 (Stochastic Process) A stochastic process is a collection of random
variables {Xt , t ∈ T }, defined on some probability space (S, F, P).
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9.2 Stochastic Differential Equations

Random fluctuations are inherent to many natural and artificial systems and they
have led to mathematical models in the form of Stochastic Differential Equations
(SDE). These type of models incorporate fluctuations as noise, and they appear in
many applications that include: chemical physics, laser systems, electronic oscil-
lators, combustion, mathematical biology, antennas and radars, gyroscope systems,
precision timing devices, and sensors.

From a dynamical systems standpoint, a physical or biological system subject to
random noise can be modeled through the following stochastic differential equation

dx(t)

dt
= f (x(t)) + g(x(t)) ξ(t), (9.1)

where x(t) ∈ R
n represents the state of the system at time t ≥ 0, f (x) ∈ R

n describes
the deterministic dynamics, g(x) ∈ R

n is a smooth vector-valued function, and ξ(t) is
a scalar function describing random fluctuations–internal and external to the system.
When g is constant, the noise is called additive, and when it depends explicitly on
the state variable, x , is called multiplicative.

The simplest approximation of real-life fluctuations, ξ(t), are in the form of Gaus-
sian white noise. White noise can be interpreted as a series of independent pulses that
act on a system in random directions, so that the average of all perturbations is zero.
This leads to a uniform power spectral density over equal intervals of frequencies.
Gaussian noise exhibits zero mean, zero correlation time and infinite variance, so
that the autocorrelation function follows a Dirac delta function. That is,

〈ξ(t)〉 = 0,

〈ξ(t) ξ(s)〉 = 2Dδ(t − s),
(9.2)

where D = λkB T is Einstein diffusion coefficient, which represents the noise inten-
sity, kB is Boltzmann’s constant, and T is absolute temperature, ξ(t) is the derivative
of a Wiener (i.e., Brownian motion) process [1, 2]. That is,

ξ(t) = dW

dt
.

However, this derivative does not exist since the Wiener process, W (t), is nowhere
differentiable. It is used, nevertheless, as a heuristic representation.With this inmind,
we can write the stochastic model as

dx(t)

dt
= f (x(t)) + g(x(t))

dW

dt
.
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A common way of writing a stochastic differential equation is to multiply by “dt” the
previous expression, which leads to the more commonly used form of a stochastic
differential equation:

dx(t) = f (x(t)) dt + g(x(t)) dW

x(0) = x0.
(9.3)

The solution to the SED Eq. (9.3) is given by

x(t) = x0 +
∫ t

0
f (x)s)) ds +

∫ t

0
g(x(s)) dW, ∀t > 0. (9.4)

The second term in the right-hand side of Eq. (9.4) is a standard integral over
time. The last term is a stochastic integral, known as an Itô’s integral [2, 3]. This
leads to identifying the stochastic process x as an Itô process.

9.2.1 Itô’s Formula

Now that we have defined a stochastic differential equation, we can address a more
subtle issue of whether the SDE Eq. (9.3) is a faithful model of the physical phe-
nomenon. This issue is subtle because in stochastic calculus the chain rule of standard
calculus takes a different form. To explore this issue in more detail, we will inves-
tigate which stochastic differential equation is satisfied by a smooth function, u(x),
twice differentiable, of an Itô process, x(t). Thus, let

Y (t) = u(x(t), t).

A Taylor expansion of u(x(t), t) yields

dy = ∂u

∂t
dt + ∂u

∂x
dx + 1

2

∂2u

∂x2
(dx)2 + · · · .

Substituting dx from Eq. (9.3) we get

dy = ∂u

∂t
dt + ∂u

∂x

(
f (x(t)) dt + g(x(t)) dW

)+
1

2

∂2u

∂x2

(
f 2(x(t))(dt)2 + 2 f (x(t))g(x(t))dtdW + g2(x(t))(dW )2

)+ · · · .

In stochastic calculus, the following rules apply:
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(dW )2 = dt, dt dW = 0, (dt)2 = 0.

These rules hold because due to the quadratic variance of a Wiener process, W , in
the limit dt → 0, the terms (dt)2 and dt dW tend to zero faster than (dW )2, which
is O(dt). If we apply these rules to the previous equation, replace (dW )2 with dt ,
and collect terms in dt and dW , we arrive at Itô’s formula:

dy(t) =
(

∂u

∂t
+ f (x(t))

∂u

∂x
+ 1

2
g2(x(t))

∂2u

∂x2

)
dt + g(x(t))

∂u

∂x
dW. (9.5)

The main conclusions here are two. First, Itô’s calculus rules lead to an additional
term in the stochastic version of the chain rule, mainly

1

2
g2(x(t))

∂2u

∂x2
.

Second, a smooth function, y(t), of an Itô process, x , which itself is a solution of
Eq. (9.3), satisfies an associated stochastic differential equation of the form

dy = fy dt + gy dW, (9.6)

where

fy = ∂u

∂t
+ f (x(t))

∂u

∂x
+ 1

2
g2(x(t))

∂2u

∂x2
, gy = g(x(t))

∂u

∂x
dW.

9.2.2 Examples

Example 9.1 (Stochastic Model for Stock Prices). Let P(t) represent the price of
a stock at time t . The evolution of this stock in time can be studied by considering a
SDE model for the relative change of price, d P

P , of the form

d P

P
= μdt + σdW, (9.7)

where the parameter μ > 0 represents the drift of the stock, and σ can be interpreted
as the volatility of the market, and W is a Wiener process. We can rewrite Eq. (9.7)
in the familiar form

d P = μPdt + σPdW

P(0) = P0.
(9.8)

The deterministic version of Eq. (9.8), i.e., with zero volatility,σ = 0, corresponds
to Malthusian growth, which we know from Chap.4 to have as a solution
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Fig. 9.1 Deterministic and
stochastic solutions of a
stock price model obtained
through the Euler-Maruyama
method. Parameters are:
μ = 2.0 and σ = 1.0.
(MATLAB code in
Appendix)
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P(t) = P0eμt .

To solve the stochastic version, we let

y = u(P) = ln P.

Applying Itô’s formula, see Eq. (9.5), we get

dy = (μ − σ2

2

)
dt + σdW.

Since y = ln P , it follows that a solution of the original stock price model Eq. (9.7)
is

P(t) = P0 eσW (t)+(μ− σ2

2 )t .

Assuming that the initial price P0 is always positive, then the stock price will
always be positive. Figure 9.1 illustrates the numerical solutions obtained from the
original SDE model of a stock price evolution. For comparison purposes, both solu-
tions, deterministic and stochastic are shown.

Example 9.2 Suppose we want to solve the following SDE:

dy = λy dW

y(0) = 1.
(9.9)

The obvious guess for a solution is y(t) = eλW (t).

But let us find out what this guess is missing. Consider the following SDE:
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dx = dW, (9.10)

which is in the form of Eq. (9.3) with f = 0 and g = 1.

Let
y = u(x, t) = eλx− λ2 t

2 .

Applying Itô’s formula we get

dy =
(

−λ2

2
eλx− λ2 t

2 + λ2

2
eλx− λ2 t

2

)
dt + λeλx− λ2 t

2 dW,

which reduces to our original Eq. (9.9). Since x(t) = W (t), the solution to Eq. (9.9)
is

y = eλW (t)− λ2 t
2 .

Heuristically, in Itô’s calculus the solution eλW (t)− λ2 t
2 plays the role of eλt in

ordinary calculus.

Example 9.3 Consider the following SDE:

dx = h(x)x dW,

x(0) = 1,
(9.11)

where h(x) is a smooth function of x .

This equation is also in the form of Eq. (9.3) with f = 0 and g = h(x)x .
Let

y = u(x, t) = ln x .

Applying Itô’s formula we get

dy = − 1

2x2
h2x2 dt + 1

x
hx dW

= −1

2
h2 dt + h dW.

Solving for y(t) we get

y(t) = −1

2

∫ t

0
h2 ds +

∫ t

0
h dW.

Since y = ln x , it follows that a solution to the original SDE Eq. (9.11) is

x(t) = e− 1
2

∫ t
0 h2 ds+∫ t

0 h dW .
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9.3 Colored Noise

So far we have considered white noise in our calculations of solutions of models
described by stochastic differential equations. Recall that white noise is characterized
by a uniform frequency spectral. On the contrary, colored noise, such as pink, red, or
blue, have their own spectral profile, which usually (but not always) is related to the
color of light with similar spectral. Thus, in general, the color of noise is a property
that is directly related to the power spectrum of the signal or the fluctuations.

In the next sections wewill discuss inmore detail the formulation of the stochastic
differential Eq. (9.1), the advantages of using colored noise in ξ(t), and how to
numerically solve related models.

9.3.1 Langevin Equation

The Langevin [4] equation

m
dv

dt
= −λv + ξ(t), (9.12)

is a stochastic differential equation that was introduced [4] to describe Brownian
motion. That is, the motion of small particles suspended in a fluid and moving under
the influence of random forces that result from collisions with molecules of the
fluid induced by thermal fluctuations. m is the mass of the particles and λ describes
mobility or the ratio of the particle’s terminal drift velocity to the collision forces.
Langevin introduced this formulation to describe the motion into two parts, a slow
varying deterministic part for the velocity, v(t), of the particles, and a rapidly varying
random part, ξ(t), which represents Gaussian white noise fluctuations.

The Langevin Eq. (9.12) can be formally solved as if it were a deterministic
ordinary differential equation, leading to

v(t) = v0e−t/τB + 1

m

∫ t

0
e−(t−s)/τB ξ(s) ds, (9.13)

where τB = m/λ is the characteristic time scale for the loss of speed gained in a
single collision by the particles. Langevin went on to show that the position, x(t), of
the particles can be described by

x(t) = x0 +
∫ t

0
v(t) dt, (9.14)
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which is differentiable on a short time scale, and, it behaves diffusively on a long
time scale with Gaussian probability distribution

p(x, t) ≈ 1

(4πDt)1/2
e−x2/(4Dt).

Example 9.4 Consider the following mathematical model of an electric circuit con-
sisting of a resistor and a capacitor

dV

dt
= − 1

RC
V + η(t), (9.15)

where V (t) represents the voltage across the resistor and η(t) represents white noise
fluctuations due to electronics.

We can rewrite this equation in the following form

C
dV

dt
= − 1

R
V + η̃(t),

where η̃(t) = Cη(t). This last equation is in Langevin form (9.12), with m = C and
λ = 1/R. It follows that the correlation of the white noise fluctuations, η(t), is

〈η(t) η(s)〉 =
〈
1

C
η̃(t)

1

C
η̃(s)

〉
= 1

C2
2Dδ(t − s) = 1

C2
2λkB T δ(t − s).

Since λ = 1/R we get

〈η(t), η(s)〉 = 2kB T

RC2
δ(t − s).

9.3.2 Ornstein-Uhlenbeck Process

A difficulty of modeling natural and artificial systems with Gaussian white noise is
that this type of noise is a mathematical idealization of fluctuations that do not occur
in real-life situations. They do not occur because white noise has no time scale, while
the fluctuations that affect physical, biological, and even electronic systems, have an
inherent nonzero correlation time. For instance, in the collision of water molecules
with Brownian particles there is a time scale beyond which the fluctuations are no
longer uncorrelated. But since the time scale of the fluctuations in this problem is
much smaller than that of the particles, then the white noise approximation can be
used, and, accordingly, the corresponding Langevin equation can be formally solved.

Many electronic systems exhibit fluctuations where the differences in time scales
is not as large to justify the use of white noise. For instance, the fluctuations in the
fluxgate magnetometer that was described in Chap. 4, can be attributed to signal
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contamination and noise from the electronics in the coupling circuitry. These fluctu-
ations manifest themselves as fluctuations about the steady states of the cores with a
finite time scale and nonzero correlation time.

To overcome this problem, the time scale of the fluctuations and of the physical
system must be taken into account. This is done by using colored noise, η(t), which
has a finite frequency-bandwidth. The simplest example of time-correlated noise is
the Ornstein-Uhlenbeck process [5], which exhibits a zero mean and an exponential
correlation function. That is,

〈η(t)〉 = 0,

〈η(t) η(s)〉 = D

τc
e(−|t−s|/τc),

(9.16)

where τc is the noise correlation time. Observe that in the limit τc → 0 the exponen-
tial in Eq. (9.16) becomes a Dirac delta function, and then the Ornstein-Uhlenbeck
process becomes a white noise process. In fact, it can be shown that the Ornstein-
Uhlenbeck process is a solution of the Langevin Eq. (9.12)

dη(t)

dt
= − 1

τc
η(t) +

√
2D

τc
ξ(t), (9.17)

with initial conditions η(0) being a Gaussian random variable of zero mean and
variance

√
2D/τc. If we combine the general form of the stochastic model, Eq. (9.1),

with the Langevin Eq. (9.17), we arrive to a (2N )D formulation of an Ornstein-
Uhlenbeck process

ẋ(t) = f (x,μ) + g(x(t)) η(t),

η̇(t) = − 1

τc
η(t) +

√
2D

τc
ξ(t),

(9.18)

where ξ(t) is a Gaussian white noise function.
A common approach to conduct computer simulations of stochastic models sub-

ject to colorednoise is to solve, numerically, both systemsofEq. (9.18).Analternative
approach is to solve, first, analytically, the second equation in Eq. (9.18) for η(t),
and, then substitute the solution in the numerical integration of the first equation.
Next we show details of the derivation of an analytical solution for η(t).

First we rewrite Eq. (9.17) as

dη(t) = − 1

τc
η(t) dt +

√
2D

τc
dW.
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Nextwe apply a suitable change of coordinates by letting y = e−t/τcη(t). This change
of variables leads to

dy =
√
2D

τc
e−t/τc dW.

The solution of this equation is

e−t/τcη(t) = η0 +
∫ t

0

√
2D

τc
e−s/τc dW (s),

which leads to the desired solution for η(t) given by:

η(t) = η0e−t/τc + σ

∫ t

0
e−(s−t)/τc dW (s). (9.19)

Example 9.5 Let us consider again the electric circuit modeled by Eq. (9.15). In
our previous example, we found the correlation function:

〈η(t) η(s)〉 = 2kB T

RC2
δ(t − s),

which shows that D = kB T/(RC2). Thus, if we rewrite Eq. (9.15) as

dV

dt
= − 1

RC
V +

√
2R2C2D

RC
η̃(t).

then we can use D to obtain the correlation function

〈V (t) V (s)〉 =
R2C2 kB T

RC2

RC
e(−|t−s|/RC) = kB T

C
e(−|t−s|/RC).

Observe that this correlation function leads to that of a white noise (Johnson noise)
function when the capacitance, C , becomes negligibly small.

Next we introduce a popular numerical technique, known as the Euler-Maruyama
method, to numerically solve stochastic differential equations.

9.3.3 Euler-Maruyama Numerical Algorithm

Consider a stochastic differential equation of the form

ẋ(t) = a(x(t), t)dt + b(x(t), t)Ẇ (t), (9.20)
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with initial condition x(0) = x0 and W (t) being a Wiener process. Let us assume
that we are interested in seeking a numerical solution to Eq. (9.20) on the interval
[0, T ]. The Euler-Murayam algorithm follows the following steps.

Step 1: Partition the interval [0, T ] into N equal subintervals of width �t > 0. That
is

0 = t0 < t1 < · · · < tN = T, and, Δt = T

N
.

Step 2: y0 = x0.

Step 3: Apply the recursive relation

yn+1 = yn + a(yn, tn)Δt + b(yn, tn)ΔWn,

where �Wn = Wtn+1 − Wtn = √
�t Zn , with Zn ∼ N (0, 1), for all n.

The random variables �Wn are independent and identically distributed normal ran-
dom variables with zero mean and variance �t .

Example 9.6 Consider the Langevin model

η̇(t) = − 1

τc
η(t) +

√
2D

τc
ξ(t), (9.21)

with D = 0.5. Below is a MATLAB code to solve this model using the Euler-
Maruyama algorithm.

1 function ou
2

3 close all;
4 clear all;
5 clc
6

7 randn('state' ,100)
8 tau = 1;
9 xi0 = 1;

10 dt = 0.01;
11 D = 0.5;
12 N = 1000;
13 T = N*dt;
14

15 pd = makedist('Normal',0,sqrt(dt));
16 dW = random(pd);
17

18 xi = zeros(1,N); % preallocate for ...
efficiency

19 xi(1) = xi0 - dt*xi0/tau + sqrt (2*D)*dW/tau;
20
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21 for j=2:N
22 dW = random(pd);
23 xi(j) = xi(j-1) - dt*xi(j-1)/tau + ...

sqrt (2*D)*dW/tau;
24 end
25

26 plot ([0:dt:T],[xi0 ,xi],'k-', 'LineWidth' ,3);
27 xlabel('t','FontSize ' ,12)
28 ylabel('\eta(t)','FontSize ',16,'Rotation ' ,0,...
29 'HorizontalAlignment ','right');
30 set(gca ,'FontSize ' ,40);
31 grid on;

Figure 9.2 illustrates the result of numerically solving Eq. (9.21) for η(t) through
the Euler-Mayurama algorithm.

Fig. 9.2 Numerical
solution, η(t), of the
Langevin model Eq. (9.21)
obtained through the
Euler-Mayurama algorithm
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9.4 Colored Noise in Bistable Systems

While in most practical applications, e.g., electronic systems, noise can degrade
performance and, thus, it must be avoided, under certain circumstances, however,
small fluctuations can help improve performance [6, 7]. This phenomenon, in which
noise can have positive effects, is known as stochastic resonance [8–13]. In dynamic
sensors, for instance, weak signals that need to be detected can be strengthened or
amplified by adding a little bit of white noise. This paradigm works as follows. Since
white noise contains a wide spectrum of frequencies, those that are associated with
the natural frequencies of the weak signal will resonate with one another. Then the
resonant effect will lead to the original signal being amplified while the remaining
white noise frequencies remain at low-power levels. In this way, the signal-to-noise
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ratio is increased, thus making the original signal stronger and, consequently, more
detectable.

To get more insight, recall our introduction to dynamic sensors from Chap. 4. In
that chapter we discussed the fact that dynamic sensors are typically governed by
overdamped bistable dynamics of the generic form

dx

dt
= −∇U (x) + η(t), (9.22)

where x(t) is the state variable of the device, i.e., magnetization state or electric field,
and U (t) is the bistable potential function. η(t) is a zero mean and an exponential
correlation function. That is,

〈η(t)〉 = 0,

〈η(t) η(s)〉 = D

τc
e(−|t−s|/τc),

The most common model is actually that of an overdamped Duffing oscillator with
a double-well potential function

U (x) = −1

2
ax2 + 1

4
bx4.

with positive parameters a and b. Figure 9.3(left) illustrates the potential function,
whose minima are located at ±xm = (a/b)1/2 and the height of the potential barrier
between the two minima is U0 = a2/(4b) and it is located at x = 0.

Introducing the scale variables x̃ = x
√

b/a, t̃ = at , η̃(t) = η
√

b/a3, τ̃ = aτ ,
D̃ = (b/a2)D, we arrive at a normalized Langevin version

 x

 U
( 

x,
 t 

)

 −x
m

  x
m

 

U
0
 

Fig. 9.3 (Top) Bistable Potential U (x) = (1/4)bx4 − (1/2)ax2. (Bottom) Noise-induced switch-
ing between wells of a potential function occurs when the period of a weak driving force approxi-
mately equals twice the noise-induced inter-well transition time
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Fig. 9.4 (Left) Motion of a particle on a double-well potential function. In the absence of noise,
the system dynamics quickly settles into an equilibrium point. Which equilibrium point is selected
depends on the initial conditions. (Right) In the presence of noise, the system dynamics now lingers
intermittently between the two equilibrium states of the deterministic system, independently of
initial conditions

dx̃

dt
= x̃ − x̃3 + η̃(t),

which satisfies the autocorrelation function

〈η̃(t) η̃(s)〉 = D̃

τ̃c
e(−|t−s|/τ̃c).

In the absence of noise, and in the presence of an external weak periodic force
f (t), the state variable in U (x + f (t)) can be induced to rock back and forth as the
double-well potential is tilted asymmetrically up and down, periodically raising and
lowering the potential barrier, as is shown in Fig. 9.3(right).

The forcing term f (t) was assumed to be too weak to induce the state variable to
oscillate freely between the two minima. Consequently, the state variable will relax
to one of the two equilibrium points or minima of the double-well potential function,
as is seen in Fig. 9.4(left). Which equilibrium point is observed depends on initial
conditions. A small amount of noise can, however, allow the system to escape the
basin of attraction and hope back and forth between the two equilibrium points,
as is now shown in Fig. 9.4(right). In this way, noise-induced oscillations can be
achieved due to the presence of stochastic resonance.

That is, stochastic resonance refers to noise-induced transitions which, due to the
nonlinear nature of a system dynamics, become synchronized with the period of an
external force. In fact, the transitions occur when the driving force approximately
equals twice the noise-induced inter-well transition time [6, 7]. A distinctive feature
of stochastic resonance is a rapid increase in a system’s output Signal-to-Noise Ratio
(SNR) under weak coupling followed by a slower decrease in SNR for stronger
coupling. At intermediate noise intensities, the system exhibits maximum SNR. This
feature is inherently due to the nonlinear nature of a system’s dynamics and cannot
be reproduced by linear systems.
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9.5 Fokker-Planck Equation

In Chap. 4 we studied, among many other features, the local behavior of determinis-
tic continuous dynamical models based on the analysis of the existence and stability
of equilibrium points. Such equilibrium points were found by setting the derivative
of the right-hand side of the model to zero and then solving for the state variable.
In the case of stochastic dynamic models, this is no longer possible because ran-
dom fluctuations render the model equations nonautonomous. Thus, instead of using
equilibrium points, the long-term behavior of a stochastic dynamical model is stud-
ied through a probability density function, p(x, t), which measures the probability
that the system is in state x at time t . The time evolution of this probability density
function is governed by the Fokker-Planck equation. There are two versions of the
Fokker-Planck equation. One due to Stratonovich and one due to Itô. We discuss
both next.

Stratonovich Version
For a one-dimensional stochastic model described by Eq. (9.1), i.e., x ∈ R, with
Gaussian white noise, ξ(t), with correlation given by Eq. (9.2), the Fokker-Planck
equation is

∂

∂t
p(x, t) = − ∂

∂x

[
f (x, t)p(x, t)

]+ D
∂

∂x

[
g(x)

∂

∂x
(g(x)p(x, t))

]
. (9.23)

In higher dimensions, where the state variable is x = [x1, . . . , xN ]T ∈ R
N , and the

internal dynamics is f = [ f1(x), . . . , fN (x)]T ∈ RN , the Fokker-Planck equation
becomes

∂

∂t
p(x, t) = −

N∑
i=1

∂

∂xi

[
fi (x, t)p(x, t)

]+

D
N∑

i, j,k=1

∂

∂xi

[
gi,k(x)

∂

∂x j

(
g jk(x)p(x, t)

)]
.

(9.24)

Itô’s Version
An alternative interpretation due to Itô yields the following 1D version of the Fokker-
Planck equation

∂

∂t
p(x, t) = − ∂

∂x

[
f (x, t)p(x, t)

]+ D
∂2

∂x2

[
g2(x)p(x, t)

]
. (9.25)

And in higher dimensions, Itô’s version of the Fokker-Planck equation becomes

∂

∂t
p(x, t) = −

N∑
i=1

∂

∂xi

[
fi (x, t)p(x, t)

]+ D
N∑

i, j=1

∂2

∂xi∂x j

[
g2i j (x)p(x, t)

]
. (9.26)
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Notice that both interpretations, Stratonovich and Itô, coincide when g(x) is a
constant, which corresponds to the case of additive noise. We also note that it is
common practice to use 〈ξ(t) ξ(s)〉 = δ(t − s), in which case D = 1/2 must be
substituted in the corresponding Fokker-Planck equations.

Next, we discuss a few examples, starting with the case where g is a constant, so
that both approaches, Stratonovich and Itô, lead to the same Fokker-Planck equation.

Example 9.7 Consider an overdamped Brownian motion modeled by a 1D stochas-
tic equation driven purely by a Wiener process, i.e., f = 0 and g = 1. Assume the
diffusion coefficient to be D, so that Eq. (9.27) becomes

dx

dt
= dW (t)

dt
.

In this case, the Fokker-Planck equation is

∂ p(x, t)

∂t
= D

∂2 p(x, t)

∂x2
.

This last equation is simply the heat equation, which describes the diffusion of
a “temperature” field, p(x, t). Assuming the initial condition p(x, 0) = δ(x), and
solving for p(x, t) yields

p(x, t) = 1√
4πDt

e−x2/(4Dt).

Example 9.8 For the case of a one-dimensional stochasticmodel driven by aWiener
process, W (t), in which Ẇ (t) is a Gaussian white noise function (zero mean and
correlation as discussed earlier), with diffusion coefficient σ2(x, t)/2, Eq. (9.1) can
be written as

dx = f (x, t) dt + σ(x, t) dW (t), (9.27)

the Fokker-Planck Eq. (9.67) becomes

∂

∂t
p(x, t) = − ∂

∂x

[
f (x, t)p(x, t)

]+ D
∂2

∂x2

[
σ2(x, t)p(x, t)

]
. (9.28)

Example 9.9 Let us consider an Ornstein-Uhlenbeck process described by
Eq. (9.18). For completeness purposes, we rewrite the model in Langevin form

ẋ(t) = − 1

τc
x(t) + σ

τc
ξ(t).

Using Eq. (9.28), we find the associated Fokker-Planck equation to be
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∂ p(x, t)

∂t
= 1

τc

∂

∂x
(xp(x, t)) + Dσ2

τ 2
c

∂2 p(x, t)

∂x2
.

The steady-state solution, ps(x), of the Fokker-Planck equation can be found by
setting ∂t p = 0, and then solving for p(x, t), which yields

ps(x) = 1√
2πD

τc
σ

e−x2/(2Dσ2/τc).

Example 9.10 Let us consider again the bistable system modeled by Eq. (9.22),

dx

dt
= −∇U (x) + η(t)

with a double well potential potential function

U (x) = U (x) = −1

2
x2 + 1

4
x4.

and η(t) assumed to be a Gauss white noise function with correlation

〈η̃(t) η̃(s)〉 = 2Dδ(t − s).

The Langevin equation becomes

dx

dt
= x − x3 + η(t). (9.29)

The corresponding Fokker-Planck equation is

∂ p(x, t)

∂t
= ∂

∂x

(
U ′(x)p(x, t)

)+ D
∂2 p(x, t)

∂x2
.

Once again, we seek a steady-state solution, ps(x), by setting ∂t p = 0:

D
d2 ps

dx2
+ d

dx

(
U ′(x)ps

) = 0.

Integrating once, we get

dps

dx
= −U ′

D
ps + c1,

where c1 is an arbitrary constant. Assuming the boundary condition ps(∞) = 0,
leads to c1 = 0. Integrating a second time we find the desired steady-state solution:
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ps(x) = c2e− 1
D U (x).

Substituting the potential function U (x) defined above, we get

ps(x) = c2 exp

[
− 1

D

(
x4

4
− x2

2

)]
,

where c2 is also an arbitrary constant.

For small values of D, this steady-state solution, ps(x), is a bimodal distribu-
tion. In fact, the time-evolution of the bistable system is spent, mostly, near the two
equilibrium points, x = −1 and x = 1, of the deterministic system, see Fig. 9.4.

Example 9.11 Let us consider now a 2D stochastic system of the form

dx1
dt

= μ(1 − x2
1 − x2

2 )x1 − ωx2 + η1(t)

dx2
dt

= μ(1 − x2
1 − x2

2 )x2 + ωx1 + η2(t),
(9.30)

where μ and ω are parameters, and

〈η̃i (t) η̃ j (s)〉 = 2Dδi jδ(t − s).

Let us examine first the deterministic system. Using polar coordinates, with x1 =
r cos θ and x2 = r sin θ, the deterministic system leads to the following amplitude-
phase dynamics

dr

dt
= μ(1 − r2)r

dθ

dt
= ω.

Observe that in polar coordinates the amplitude and phase equations decouple
from one another. Furthermore, the equilibrium r = 1 corresponds to a limit cycle.
A linear stability analysis shows that whenμ > 0, this limit cycle is locally asymptot-
ically stable. Next, we investigate what happens to this limit cycle under the presence
of noise.

The Fokker-Planck equation for the joint probability distribution function,
p(x1, x2, t) is

∂ p(x, t)

∂t
= − ∂

∂x1
( f1 p) − ∂

∂x1
( f2 p) + D

(
∂2 p(x, t)

∂x2
1

+ ∂2 p(x, t)

∂x2
2

)
. (9.31)

To find a steady-state solution, it is more convenient to rewrite Eq. (9.31) in polar
coordinates
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∂ p(x, t)

∂t
= −1

r

∂

∂r

[
μ(1 − r2)r2 p

]− ∂

∂θ
(ω p) + D

(
1

r

∂

∂r

(
r
∂ p

∂r

)
+ 1

r2
∂2 p

∂θ2

)
.

It is convenient to assume ps(x) to be independent of θ. That is,

∂ ps(x)

∂θ
= 0.

Then, setting ∂t p = 0 we get

−1

r

d

dr

[
μ(1 − r2)r2 p

]− D
1

r

d

dr

(
r

dps

dr

)
= 0.

Solving this ordinary differential equation produces the desired steady-state solu-
tion:

ps(x) = c exp

[
μ

D

(
r2

2
− r4

4

)]
,

where c is a constant.
Figure 9.5 illustrates the computer simulation of the model Eq. (9.30) obtained

through the Euler-Maruyama method. For comparison purposes, both, the determin-
istic and stochastic solutions are shown.

Example 9.12 Wenowconsider a casewhere the function g(x) is no longer constant,
and discuss the differences between the Stratonovich’s and the Itô’s version of the
Fokker-Planck equation. Consider the Langevin SDE

dx

dt
= x η(t)

x(0) = x0,
(9.32)

Fig. 9.5 Numerical solution
of the 2D stochastic model
Eq. (9.30) obtained through
the Euler-Mayurama
algorithm
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where η(t) is a Gaussian white noise function with zero mean and correlation
〈η(t) η(s)〉 = 2Dδ(t − s). The Fokker-Planck equations produced by these two
approaches are

∂ p(x, t)

∂t
= D

∂

∂x

(
x

∂

∂x
(xp)

)
(Stratonovich),

∂ p(x, t)

∂t
= D

∂2

∂x2

(
x2 p
)

(Itô).

(9.33)

We will explore the differences in these two approaches through the mean of the
state variable x(t), which is defined as

〈x(t)〉 =
∫ ∞

−∞
x p(x, t) dx .

To find an expression for 〈x(t)〉 we can multiply the Fokker-Planck equations by
x and then integrate. Let’s do this first with the Stratonovich’s version:

∂

∂t

∫ ∞

−∞
x p(x, t) dx = D

∫ ∞

−∞
x

∂

∂x

(
x

∂

∂x
(xp)

)
dx .

Integrating by parts once we get

d

dt
〈x(t)〉 = −D

∫ ∞

−∞
x

∂

∂x
(xp)dx .

Integrating by parts, again, we arrive at

d

dt
〈x(t)〉 = D

∫ ∞

−∞
x p dx = D〈x(t)〉.

Solving this ODE we obtain the desired mean value

〈x(t)〉 = x0 eDt . (9.34)

We now apply a similar process to Itô’s version. Start by multiplying by x and
then integrate:

∂

∂t

∫ ∞

−∞
x p(x, t) dx = D

∫ ∞

−∞
x

∂2

∂x2

(
x2 p
)

dx .

Integrating by parts we arrive at

d

dt
〈x(t)〉 = 0,
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which leads to the solution
〈x(t)〉 = x0. (9.35)

Now, if we average the original SDE model Eq. (9.32) we get

d

dt
〈x(t)〉 = 〈x(t) η(t)〉.

Thus, comparing Eqs. (9.34) and (9.35), we see that Itô’s interpretation of the
Fokker-Planck equation leads to 〈x(t) η(t)〉 = 0, while Stratonovich’s approach
yields 〈x(t) η(t)〉 �= 0. This happens because in Itô’s approach, x(t) depends on
η(s) only for s < t . Beyond s > t , x(t) is independent, so x(t) and η(t) are uncor-
related. In Stratonovich’s approach, x(t) and η(t) are, however, correlated, so the
average is nonzero.

Some authors point out that Stratonovich’s approach ismore suitable formodeling
stochastic process from physics and engineering, while Itô’s interpretation is more
suitable for mathematical and financial models.

9.6 Phase Drift in a Network of Gyroscopes

The French mathematician, mechanical engineer, and scientist, Gaspard-Gustave de
Coriolis (1792–1843) is best known for the discovery of the “Coriolis” effect: “an
apparent deflection and acceleration of moving objects from a straight path when
viewed from a rotating frame of reference” [14]. The observed inertial acceleration
of the object, also known as Coriolis acceleration, serves nowadays as the basic
principle of operation of many inertial navigation systems, including gyroscopes.
Vibratory gyroscopes, in particular, are sensor devices that can measure absolute
angles of rotation (type I gyroscope) or rates of angular rotation (type II).All vibratory
gyroscopes operate on the basis of energy transferred between two vibration modes,
a driving mode and a sensing mode, by Coriolis force [15–17]. The conventional
model of a vibratory gyroscope consists of a mass-spring system, see Fig. 9.6. A
change in the acceleration around the driving axis caused by the presence of Coriolis
force induces a vibration in the sensing axis which can be converted to measure
angular rate output or absolute angles of rotation.

The accuracy of most gyroscope systems depend on three parameters: quality
factor, phase drift, and robustness. The quality factor is the linear deviation of the
measured rate from the true rate (normally given as a percentage of full scale). It
characterizes the capability of a gyroscope to accurately sense angular velocity at
different angular rates, including the sensitivity of the angular rate sensor and its
ability to convert voltage output into angular rate, so its units are in (deg/s)/V .
The phase drift is the offset error output that appears as an additive term on the
gyroscope output due, mainly, to temperature fluctuations. It characterizes the ability
of a gyroscope to reference all rate measurements to the nominal zero rate output, so
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its units are in deg/sec or deg/h. Robustness is the deviation of the measured rate
due to noise influence or parameter variations and it is very important because signal
processing of the gyroscope output can introduce noise. The units of measurement
for the effect of noise are generally deg/

√
D, where D is the intensity of noise.

9.6.1 Equations of Motion

The configuration of the vibratory gyroscope of Fig. 9.6 contains two vibration
modes: the primary mode (x-direction) and the secondary mode (y-direction).
Both modes are coupled to one another by Coriolis force through the term Fcx =
|2m ��z × ẏ| = 2m�z ẏ and Fcy = |2m ��z × ẋ | = −2m�z ẋ , respectively, wherem is
mass and �z is the angular rate of rotation along a perpendicular direction (z-axis).
The governing equations for the entire spring-mass system can then be written in the
following form

mẍ + cx ẋ + Fr (x) = Fe(t) + 2m�z ẏ (drive)
mÿ + cy ẏ + Fr (y) = − 2m�z ẋ, (sense)

(9.36)

where cx (cy) is the damping coefficient along the x-direction (y-direction), Fr (·) is
the elastic restoring force of the springs. A typical model for the restoring force along
the x-direction, for instance, has the form: Fr (x) = κx x + μx x3, where κx and μx

Fig. 9.6 Schematic diagram of a model for a vibratory gyroscope system. An internal driving force
induces the spring-mass system to vibrate in one direction, the x-axis in this case. An external
rotating force, perpendicular to the plane of the spring-mass system, induces, on the other hand,
the spring-mass system to oscillate in the y-direction by transferring energy through Coriolis force.
The oscillations along the y-axis can be used to detect and quantify the rate of rotation
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Table 9.1 System parameters for a vibratory gyroscope

Parameter Value Unit

m 1.0E-09 Kg

cx , cy 5.1472E-07 N s/meter

κx , κy 2.6494 N/meter

μx , μy 2.933 N/meter3

Ad 1.0E-03 N

wd 5.165E+04 rad/sec

are constant parameters. The same model applies to the y-axis, just replace x by y.
The x-axis mode, which is also known as the drive axis, is also excited by a reference
driving force, typically a periodic signal of the form Fe = Ad coswd t , where Ad is
the amplitude and wd is the frequency of the excitation. Typical parameter values,
which we will consider in this work, are shown in Table 9.1.

Under these conditions, the gyroscope of Fig. 9.6 can detect an applied angular
rate�z bymeasuring the displacements along the y-axis (also known as sensing axis)
caused by the transfer of energy by Coriolis force. If there is no external rotation,
i.e., �z = 0, the motion Eqs. (9.36) along the two axes become uncoupled from one
another.

9.6.2 Bi-Directionally Coupled Ring

Wenow consider an array of N vibratory gyroscopes arranged in a ring configuration,
coupled bidirectionally along the drive axis, so that the equations of motion can be
written in the general form

m j ẍ j + cx j ẋ j + Fr (x j ) = Fej (t) + 2m j�z ẏ j +
∑
k→ j

c jkh(x j , xk)

m j ÿ j + cyj ẏ j + Fr (y j ) = − 2m j�z ẋ j ,

(9.37)

where h is the coupling function between gyroscopes j and k, the summation is
taken over those gyroscopes k that are coupled to gyroscopes j and c jk is a matrix
of coupling strengths. Parameter values are the same as those shown in Table 9.1.
We choose to couple the gyroscopes through the drive axis because this type of
coupling is the most natural way to add signals on top of the already existing external
drive signal. One may also choose to couple through the sense axis but that may
involve more design changes and added circuitry to accommodate the input signal.
In this section we will consider, in particular, a diffusive coupling function of the
form h(x j , xk) = xk − x j . Here we consider the response of the coupled gyroscope
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system to a weak periodic force, so we apply the transformation Ad → ε. In an
attempt to understand the collective behavior of the network,wemake the simplifying
assumption of the mass-spring-dampers to be identical and set all coefficients equal
to the mean value for a typical ensemble of gyroscopes. In addition, we assume
each gyroscope to be excited by the same external harmonic sine-wave signal with
one driving frequency in the drive coordinate axis, i.e., Fei = Fd sinwd t . Further
assuming the coupling strength to be identical, i.e., c jk = λ, the equations of motion
take the form

mẍ j + cẋ j + κx j + μx3
j = ε sinwd t + 2m�z ẏ j + λ(x j+1 − 2x j + x j−1)

mÿ j + cẏ j + κy j + μy3j = − 2m�z ẋ j .

(9.38)

9.6.3 Computational Bifurcation Analysis

Computer simulations and the continuation software packageAUTO [18] confirm the
existence of all three solution classes predicted by the lattice of isotropy subgroups
for the special case n = 3, see Fig. 9.7, including the IP transition d1 → dn.

The onset of oscillations in the model Eqs. (9.38) occurs when the coupling
strength exceeds a critical value, which we denote by λc. When λ < λc, there are
two stable periodic solutions and one unstable periodic solution. The stable solu-
tions correspond to (a, a, b)—two patterns of oscillation in which two of the driving
modes oscillate in synchrony but with non-zero mean (one positive and one negative)
while the third mode oscillates with a different non-zero mean. The unstable solu-
tion represents the complete-synchronization state (a, a, a). As λ increases towards

Fig. 9.7 One-parameter bifurcation diagram illustrating the existence and stability properties of
synchronized periodic oscillations in a ring of three vibratory gyroscopes bi-directionally coupled.
As λ approaches (from the left) a critical coupling strength, λc, three periodic solutions merge in a
supercritical pitchfork bifurcation. The stable solutions are periodic solutions with non-zero mean
while the unstable solution is the synchronized state in which the driving modes oscillate with the
same amplitude and the same phase. Pastλc the synchronized state becomes globally asymptotically
stable, as is supported by numerical calculation of eigenvalues of the linearized vector field
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λc, the two non-zero mean periodic solution and the zero-mean periodic solution
merge in a supercritical pitchfork bifurcation. Past λc, only the zero-mean periodic
solution exists and becomes globally asymptotically stable (as is determined from
the eigenvalues obtained numerically with the aid of AUTO). The oscillations along
the sensing axis are, however, unaffected by the change in coupling. They are always
stable and completely synchronized with one another though they are out-of-phase
by π with those of the driving axis due to the sign difference in the Coriolis force
terms.

9.6.4 Robustness

We expect noise in a coupled gyroscope system to arise from two main sources:
fluctuations in the mass of each individual gyroscope and contamination of a target
signal. In the former case, we need to replace m in the motion equations by mi .
Experimental data suggest that the range mi = 1.0E − 09 ± 10% is actually reason-
able. In the latter case, we consider a target signal contaminated by noise, assumed
to be Gaussian band-limited noise having zero mean, correlation time τc (usually
τF << τc, where τF is the time constant of each individual gyroscope, so that noise
does not drive its response), and variance σ2. This type of noise is a good approxima-
tion (except for a small 1/ f component at very low frequencies) to what is actually
expected in an experimental setup. From a modeling point of view, colored noise
η(t) that contaminates the signal should appear as an additive term in the sensing
axis, leading to a stochastic (Langevin) version of the model equations, which for
the ring configuration with bidirectional coupling we get

m j ẍ j + cẋ j + κx j + μx3
j = ε sinwd t + 2m j�z ẏ j + λ(x j+1 − 2x j + x j−1)

m j ÿ j + cẏ j + κy j + μy3j = −2m j�z ẋ j + η j (t),

dη j

dt
= −η j

τc
+

√
2D

τc
ξ(t).

(9.39)
In general, we would expect somewhat different noise in each equation, since,

realistically, the reading of the external signal is slightly different in each sensing
axis. This is due to non-identical circuit elements, mainly. In this work we will
consider, therefore, the situation wherein the different noise terms ηi (t) are uncor-
related; however, for simplicity, we will assume them to have the same intensity
D. Each (colored) noise ηi (t) is characterized by 〈ηi (t)〉 = 0 and 〈ηi (t)ηi (s)〉 =
(D/τc) × exp [−|t − s|/τc], where D = σ2τ 2

c /2 is the noise intensity, ξ(t) is a gaus-
sianwhite noise function of zeromean, and the “white” limit is obtained for vanishing
τc.

Computer simulations of ensembles of various network sizes N of uncoupled and
coupled gyroscopes were conducted for comparison purposes of phase drifts. Each
ensemble consisted of M = 100 simulation samples with random fluctuations in
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Fig. 9.8 Comparison of phase drift between (left) an ensemble of three uncoupled gyroscopes and
(right) a three-gyroscope coupled system. Parameters are: Ad = 0.001,�z = 100, and λ = −0.65,
m j = 1.0E − 09 ± 10%, and noise intensities D = ±1.0E − 09

mass and noise intensities. The phase of each individual j gyroscope was calculated
through α j = arctan (−ẏ j/wd y j ). Then the phase drift on that individual gyroscope
was obtained as the difference between its phase with noise and its phase without
noise, i.e., θ j = αnoise

j − αno noise
j . Finally, the average phase drift

θ(t) = 1

M N

M N∑
j=1

θ j ,

of the entire ensemble was calculated for both cases, uncoupled and coupled ensem-
bles. Figure 9.8 shows, in particular, the phase drift of an ensemble of three individual
gyroscopes and the phase drift of a similar ensemble but with coupling. The reduc-
tion in the phase drift of the sensing axis of the coupled system is, approximately,
by a factor of 1.7 times that of the uncoupled system.

To calculate the actual reduction factor we first compute the interquartile range
(IQR) of both uncoupled and coupled ensembles. The IQR measures the phase drift
variation from the 25% percentile to the 75% percentile. The reduction factor is then
the ratio IQR(θc) / IQR(θu), where the superscript indicates whether the gyroscopes
are coupled or uncoupled, respectively. Figure 9.9 shows the resulting reduction
factors for various network sizes.

For small N the reduction factor of a coupled vs. uncoupled ensemble appears to
decrease steadily as N increases but it then increases for networks larger than N = 8
gyroscopes, approximately. Careful examination of the average amplitude response
of an ensemble of coupled gyroscopes reveals that the amplitude of the sensing
axis is dynamically dependent on the number N of gyroscopes and the coupling
strength λ, see Fig. 9.10. In fact, the largest amplitudes are achieved in the vicinity
of N = 8. Larger amplitudes, in turn, can better attenuate the effects of noise and
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Fig. 9.9 Reduction factor in
the phase drift of a coupled
gyroscope system as
measured through the
interquartile range of
ensembles between 80 and
100 samples. Parameters are:
Ad = 0.001, �z = 100,
m j = 1.0E − 09 ± 10%
with noise intensities
D = ±1.0E − 09

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

IQ
R

 R
at

io
 (

co
up

le
d/

un
co

up
le

d)
N

Fig. 9.10 Average
amplitude response of the
sensing axis of ensembles of
coupled gyroscopes with
various network sizes and
coupling strengths.
Parameters are: Ad = 0.001,
�z = 100,
m j = 1.0E − 09 ± 10%
without noise

mass fluctuations, and thus, this explains why the bidirectionally coupled gyroscope
system yields an optimal phase drift around N = 8.

9.7 Phase Drift in a Model for Precision Timing

Precise time is crucial to a variety of economic activities around the world. Com-
munication systems, electrical power grids, and financial networks all rely on pre-
cision timing for synchronization and operational efficiency. The free availability of
GPS [19] time has enabled cost savings for industrial and scientific developments
that depend on precise time and has led to significant advances in capability. For
example, wireless telephone and data networks use GPS time to keep all of their
base stations in synchronization.
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Fig. 9.11 Phase error scaling in an ensemble of N crystal oscillators. When the crystal oscillators
are uncoupled, the scaling is about 1/

√
N , see red line.When the oscillators are coupled, the scaling

can be (for certain values of the coupling strength, λ, and for certain patterns such as rotating wave
solutions) about 1/N . Blue markers represent experimental measurements. Solid black curve shows
predictions from a relevant mathematical model

The standard practice in precision timing is to average out the timing of multiple
(uncoupled) clocks. For instance, at the United States Naval Observatory time is
measured by averaging the time of an ensemble of (uncoupled) atomic clocks, in
which phase error scales as 1/

√
N , see red line in Fig. 9.11.

In this section, we show proof of concept that an ensemble of coupled crystal
oscillators can produce (through certain patterns of oscillations, such as rotating
waves with constant phase differences) a phase error that scales, at least, as 1/N ,
see experimental data shown as blue markers in Fig. 9.11. Predictions from a math-
ematical model (see Appendix B) for details of computational work) of a network
of coupled crystal oscillators are shown by a solid black curve in Fig. 9.11. Crystal
oscillators were chosen because they are readily available, inexpensive and require
low power for operation. However, the fundamental idea of performance enhance-
ment via collective behavior is a model-independent feature which should apply to
any network of coupled nonlinear oscillators, provided that the collective oscillations
are, qualitatively, the same.

The success of the averaging technique in the analysis of a single crystal oscillator
model, see Eq. (4.62) in Chap. 4, has lead us to consider a similar approach for the
analysis of a network of coupled crystal oscillators. We discuss next the coupled
system.
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9.7.1 Coupled System

In this section we consider a Coupled Crystal Oscillator System (CCOST) made
up of N , assumed to be identical, crystal oscillators. We consider first the case of
unidirectional coupling in a ring fashion, as is shown schematically in Fig. 9.12. Each
node is represented by the circuit diagram found in Fig. 4.35. The spatial symmetry
of the ring is described by the group ZN of cyclic permutations of N objects. In
the case of bidirectional coupling, the spatial symmetry is captured by the dihedral
group DN of permutations of an N -gon.

Applying Kirchhoff’s law to the CCOST network with unidirectional coupling
yields the following governing equations

Lk, j
d2ik, j

dt2
+ Rk, j

dik, j

dt
+ 1

Ck, j
ik, j = [a − 3b

(
ik,1 + ik,2 − λ

[
ik+1,1 + ik+1,2

])2]
[

dik,1

dt
+ dik,2

dt
− λ

(
dik+1,1

dt
+ dik+1,2

dt

)]
,

(9.40)

where k = 1, 2, . . . , N mod N , j = 1, 2. Since we assume identical components
in each crystal oscillator, then the set of parameters reduces to: Lk,1 = L1, Lk,2 =
L2, Rk,1 = R1, Rk,2 = R2, Ck,1 = C1 and Ck,2 = C2. Letting t = √

L1C1τ ,�2
1 = 1,

�2
2 = L1

L2

C1
C2
, Lr = L1

L2
, ε =

√
C1
L1
, and relabeling τ as time t , we write Eq. (9.40) in

dimensionless form

d2ik,1

dt2
+ �2

1ik,1 = ε

{
−R1

dik,1

dt
+ [a − 3b

(
ik,1 + ik,2 − λ

[
ik+1,1 + ik+1,2

] )2]
[

dik,1

dt
+ dik,2

dt
− λ

(
dik+1,1

dt
+ dik+1,2

dt

)]}

d2ik,2

dt2
+ �2

2ik,2 = εLr

{
−R2

dik,2

dt
+ [a − 3b

(
ik,1 + ik,2 − λ

[
ik+1,1 + ik+1,2

] )2]
[

dik,1

dt
+ dik,2

dt
− λ

(
dik+1,1

dt
+ dik+1,2

dt

)]}
.

(9.41)

f5fN

f1

f2 f3

f4

Fig. 9.12 CCOST concept with unidirectionally coupled crystal oscillators
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After applying the following set of invertible coordinates transformations

ik j = xk j cosφk j ;
i ′
k j = −� j xk j sin φk j ;

i ′′
k j = −� j x ′

k j sin φk j − �2
j xk j cosφk j − � j xk jψ

′
k j cosφk j ;

φk j = � j t + ψk j ;

(9.42)

for j = 1, 2 we arrive at the following set of equations, written symbolically as:

[
x′

k
φ′

k

]
=
[

0
�0

]
+ ε

[
X[1](xk,φk,φk+1, ε)
�[1](xk,φk,φk+1, ε)

]
, (9.43)

wherexk = (xk1, xk2),φk = (φk1,φk2) and�0 = (�1,�2). The vectorX[1] has poly-
nomial functions containing linear and cubic terms in xk1, xk2, xk+1,1 and xk+1,2 while
�[1] has terms only dependent on φk and at most quadratic terms in xk+1 divided by
xk .

Next we remove the O(ε) dependence in the equation for φk by using coordinates
φk �→ φk + φs and φk+1 �→ φk+1 + φs , where φs = (φs1,φs2). Then Eq. (9.43)
becomes

⎡
⎣ x′

k
φ′

k
φ′

s

⎤
⎦ =

⎡
⎣ 0

0
�0

⎤
⎦+ ε

⎡
⎣X[1](xk,φk + φs,φk+1 + φs, ε)

�[1](xk,φk + φs,φk+1 + φs, ε)
0

⎤
⎦ . (9.44)

The explicit form of these equations is not shown for brevity. In the bidirectional
case, the dimensionless equations are

d2ik,1

dt2
+ �2

1ik,1 = ε

{
−R1

dik,1

dt
+ [a − 3b

(
ik,1 + ik,2−

λ
[
ik+1,1 + ik+1,2 + ik−1,1 + ik−1,2

] )2]
[

dik,1

dt
+ dik,2

dt
− λ

(
dik+1,1

dt
+ dik+1,2

dt
+ dik−1,1

dt
+ dik−1,2

dt

)]}

d2ik,2

dt2
+ �2

2ik,2 = εLr

{
−R2

dik,2

dt
+ [a − 3b

(
ik,1 + ik,2−

λ
[
ik+1,1 + ik+1,2 + ik−1,1 + ik−1,2

] )2]
[

dik,1

dt
+ dik,2

dt
− λ

(
dik+1,1

dt
+ dik+1,2

dt
+ dik−1,1

dt
+ dik−1,2

dt

)]}
.

(9.45)

The transformation (9.42) leads to the following network equations
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⎡
⎣ x′

k
φ′

k
φ′

s

⎤
⎦ =

⎡
⎣ 0

0
�0

⎤
⎦+ ε

⎡
⎣X[1](xk,φk + φs,φk+1 + φs,φk−1 + φsε)

�[1](xk,φk + φs,φk+1 + φs,φk−1 + φsε)
0

⎤
⎦ (9.46)

with X[1] is a vector of polynomial functions containing linear and cubic terms in
xk1, xk2, xk+1,1, xk+1,2, xk−1,1 and xk−1,2 and �[1] has a similar structure as described
above. The complete set of equations is not shown for brevity.

A similar set of equations are obtained for the bidirectional case. The complete
equations are omitted for brevity as they are very long, but they are found in [20].
The symmetry of these averaged amplitude-phase equations is captured by the groups
ZN × O(2) × O(2) and DN × O(2) × O(2) for the unidirectional and bidirectional
coupling cases, respectively. A complete analysis of the equations can be found
in [20].

9.7.2 Phase Relations

At the beginning of this section we showed proof of concept, via computer simula-
tions, that certain patterns of collective behavior produced by a network of crystal
oscillators, mainly standard rotating waves, can lead to phase drift reduction that
follows a 1/N scaling law, which is better than the 1/

√
N shown by an uncoupled

ensemble [21]. We now provide a mathematical explanation of why the standard
wave patterns are the desirable patterns that can lead to the best phase drift reduc-
tion. More importantly, we also show, analytically, that 1/N is the fundamental limit
of phase drift scaling that can be achieved by a network configuration.

But, first, we need to comment on some technical issues that justify the use of
the averaged Eqs. (9.46). These averaged amplitude-phase system can be written in
complex coordinates, (z1, z2), as follows:

żk1 = (a − R1)zk1 − 3b

4
(|zk1|2 + |zk2|2)zk1 − aλzk+1,1+

3

4
b(λ + λ3)(|zk+1,1|2 + 2|zk+1,2|2)zk+1,1 − 3

2
bλ2(|zk+1,1|2 + |zk+1,2|2)zk,1−

3
4bλ2z2k+1,1zk,1 − 3

2bλ2zk,2zk+1,1zk+1,2
(
e2iαk1 + e2i(αk1+αk2)

)+
3bzk,1zk,2zk+1,2eiαk2 cosαk2

żk2 = Lr (a − R2)zk2 − 3

4
Lr b(|zk1|2 + |zk2|2)zk2 − Lr aλzk+1,2+

3
4 Lr b(λ + λ3)(|zk+1,2|2 + 2|zk+1,1|2)zk+1,2−
3
2 Lr bλ2(|zk+1,2|2 + |zk+1,1|2)zk,2 − 3

4 Lr bλ2z2k+1,2zk,2−
3
2 Lr bλ2zk,1zk+1,1zk+1,2

(
e2iαk1 + e2i(αk1+αk2)

)+
3Lr bzk,2zk,1zk+1,1eiαk1 cosαk1,

(9.47)

where zk j = xk j eiφk j and αk j = φk j − φk+1, j , j = 1, 2. These equations are now
symmetric under the group ZN × O(2) × O(2).
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A similar set of equations are obtained for bidirectional coupling but they have
been omitted for brevity. Their symmetries are described by the groupDN × O(2) ×
O(2).We discussed above the fact that the averaging process rendered the amplitude-
phase equations of the precision-timing network with Γ ⊂ SN symmetry into a
new set of equations with Γ × O(2) symmetry. In the case of crystal oscillators,
there are two modes of oscillations, which adds an additional O(2) symmetry, i.e.,
Γ × O(2) × O(2). We considered two types of coupling, unidirectional, in which
case Γ = ZN , and bidirectional, where Γ = DN . In both cases, the averaged sys-
tem decouples along fixed point subspaces of the two SO(2) ⊂ O(2) actions. The
decoupling guarantees that we can work with a simpler system corresponding to a
unique mode in Fix(SO(2)).

Another way to observe the decoupling is by setting zk2 to zero as an initial
condition, and then notice that the right hand side of the second equation in (9.47)
vanishes completely. Thus, zk2 must be constant, remaining at the initial condition,
i.e., zero at all times. It follows that zk2 = 0 is an invariant subspace of the network
dynamics. Similarly, zk1 = 0 is also an invariant subspace, since the right hand side
of the first equation in (9.47) vanishes when zk1 is set to zero (as an initial condition).
Consequently, Eq. (9.47) decouples over two invariant subspaces, zk2 = 0 or zk1 = 0.
This means that we can focus the analysis of the network dynamics on one mode
of oscillation at a time. This is also true for the case of an array of crystals coupled
bidirectionally. In both cases we choose the invariant subspace zk2 = 0 to study
phase drift under the influence of noise because the other invariant subspace, zk1 = 0,
corresponds to the spurious mode of oscillation.

Although one of the principal justifications for using the averaged system is to
work with equations that are more manageable, i.e., in terms of modes being decou-
pled and having computationallymanageable eigenvalues, onemust be a little careful
about relating the phase dynamics of the averaged system to that of the original sys-
tem. We argue next that the phases of equilibrium points of the averaged system
correspond, indeed, to the phases of the periodic solutions of the original system.
In fact, we have shown in [22], first, that steady-state branches of the averaged sys-
tem lead to periodic solutions of the original system. More importantly, we showed,
secondly, that the symmetry group Σ ⊂ Γ × SO(2) of steady-state solutions of the
averaged system transfers to spatio-temporal symmetry groups of the corresponding
solutions. Furthermore, the projection of the isotropy subgroup Σ into the SO(2)
symmetry becomes the desired temporal shift of the phase dynamics of the original
system. This provides the necessary justification for using the phase dynamics of
the averaged system in the analysis of phase drift, which explain the computational
results shown in Fig. 9.11.

9.7.3 Analysis of Uncoupled Network

In the uncoupled case, αk j = 0. Using the explicit expressions for the averaged
system (9.47), we obtain the linearization at the trivial equilibrium zk = 0,



464 9 Stochastic Models

żk = (a − R1)zk + (ηA
k (t) + η

p
k (t)i)zk . (9.48)

Rewriting Eq. (9.48) in amplitude-phase form we get

ẋk = (a − R1)xk + xkη
A
k (t)

φ̇k = η
p
k (t)

η̇A
k = −ηA

k

τc
+

√
2D

τc
ξA

k

η̇
p
k = −η

p
k

τc
+

√
2D

τc
ξ

p
k .

(9.49)

Observe that in this special case the phase dynamics decouples from the ampli-
tude dynamics, as it is driven purely by noise. We introduce phase drift δφk as a
perturbation of the trivial equilibrium φe

k = 0, i.e., set φk = φe
k + δφk , and get

˙δφk = η
p
k (t). (9.50)

The Fourier transform of the phase component in Eq. (9.50) yields

(iw)δ̂φk(w) = η̂k(w).

To compute the power spectral of the oscillators, we define first an inner product
operator over the complex vector space CN through

〈�v, �w∗〉 = 1

N
[v1w∗

1 + · · · + vN w∗
N ],

where ∗ denotes complex conjugation. We assume all noise functions ηk to have an
identical power spectral, |ηk |2 = |η|2, for k = 1, . . . , N . Then the power spectral per
oscillator k is given by

∣∣δ̂φk

∣∣2 = 〈δ̂φk, δ̂φ
∗
k〉 = 〈 i

w
η̂k,− i

w
η̂∗

k 〉 = 1

N

1

w2
|̂η|2,

which leads to ∣∣δ̂φk

∣∣ = 1√
N

1

w
|̂η|. (9.51)

Consequently, the phase drift for the uncoupled network scales as 1/
√

N .
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9.7.4 Analysis of Unidirectional Coupling

Using the explicit expressions for the averaged system (9.47), we obtain the lin-
earization at the trivial equilibrium zk = 0, given by

żk = (a − R1)zk − aλzk+1 + zk(η
A
k (t) + η

p
k (t)i). (9.52)

Rewriting Eq. (9.52) in amplitude-phase form we get

ẋk = (a − R1)xk − aλxk+1 cosαk + xkη
A
k (t)

φ̇k = aλ
xk+1

xk
sinαk + η

p
k (t)

η̇A
k = −ηA

k

τc
+

√
2D

τc
ξA

k

η̇
p
k = −η

p
k

τc
+

√
2D

τc
ξ

p
k ,

(9.53)

where αk = φk − φk+1. The analysis in [22] shows that all symmetry-breaking pat-
terns of collective behavior that are generated by unidirectional coupling, i.e., with
ZN × O(2) symmetry (there is only oneO(2) symmetry since the two modes decou-
ple) are discrete rotating wave periodic solutions that have the same amplitude, i.e.,
xk = xk+1. It follows that the phase equation in (9.53) decouples from the amplitude
one. The symmetry-preserving case, which leads to complete synchronization, will
be discussed later on in Sect. 9.7.5. We introduce again the phase drift δφk as a
perturbation of the equilibrium φe

k by substituting φk = φe
k + δφk into Eq. (9.53) and

writing the right hand side of the phase equation as a Taylor series expansion in φk

and φk+1, we get ˙δφk = aλ(δφk − δφk+1) cosαk + η
p
k (t). (9.54)

Once again, the classification of the patterns of oscillations, conducted in [22],
shows that the phase difference, αk = φk − φk+1, of the discrete rotating waves is
constant among consecutive oscillators. Consequently, cosαk can be replaced by
a constant as well. Thus, let μ = cosαk . In general, this constant will be nonzero.
However, there are cases where it can actually be zero. For instance, consider a
standard traveling wave, in which αk = T/N , where T represents the period of the
wave. If T = 2π and for the special case N = 4 oscillators then μ = 0.

We proceed to solve Eq. (9.54) by applying the Fourier Transform F to get

(iw)δ̂φk(w) = aλμ(δ̂φk(w) − δ̂φk+1(w)) + η̂k(w),

where δ̂φk(w) = F(δφk(t)) and η̂k(w) = F(ηk(t)). This last equation can be rewrit-
ten in matrix form

Aunidir
�̂δφ = �̂η, (9.55)
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where �̂δφ = [δ̂φ1, . . . , δ̂φN ]T , �̂η = [η̂1, . . . , η̂N ]T , and the matrix Aunidir is the cir-
culant matrix

Aunidir =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

iw − aλμ aλμ 0 0 . . . 0
0 iw − aλμ aλμ 0 . . . 0
...

...
. . .

. . . . . .
...

... . . .
. . .

. . . 0
0 . . . . . . iw − aλμ aλμ

aλμ 0 . . . . . . iw − aλμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Matrix Aunidir is invertible [23], sowe can solve for the phase drift (in the frequency
domain) to get

�̂δφ = A−1
unidir

�̂η. (9.56)

To compute the power spectral of phase drift of each individual oscillator k, we
write

δ̂φk =
N∑

j=1

a−1
k j η̂ j ,

wherea−1
k j are the entries of the inversematrix A−1

unidir, which depend on the parameters
a, λ, μ and on the frequency variable w.

The power spectral per oscillator k is then given by

∣∣δ̂φk

∣∣2 = 〈δ̂φk, δ̂φ
∗
k〉 = 1

N
[a−1

k1 η̂1(a
−1
k1 η̂1)

∗ + · · · + a−1
k N η̂N (a−1

k N η̂N )∗]. (9.57)

Assuming again all noise functions, ηk , to have an identical power spectral,
Eq. (9.57) reduces to

∣∣δ̂φk

∣∣2 = 1

N
|̂η|2

N∑
j=1

|a−1
k j |2. (9.58)

The power spectral of phase drift in the network is computed by averaging the
power spectral of phase drift of all individual oscillators. That is,

∣∣δ̂φnetwork

∣∣2 = 1

N

N∑
k=1

∣∣δ̂φk

∣∣2 . (9.59)

Substituting Eq. (9.58) into Eq. (9.59) yields
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∣∣δ̂φnetwork

∣∣ = 1

N

√√√√√∑
k=1

|̂η|2
⎛
⎝ N∑

j=1

|a−1
k j |2

⎞
⎠. (9.60)

The square root term in (9.60) is a scalar-valued term. Consequently, phase drift
in the network scales down as 1/N .

Observe that if the coupling strength is set toλ = 0 then thematrix Aunidir becomes
purely diagonal, i.e., bk j = 0 if k �= j , and bkk = iw. Substitution into Eq. (9.58)
leads to the 1/

√
N scaling law that was previously obtained for the uncoupled

network. Also, the case where μ = 0 will reduce the matrix Aunidir to that of the
uncoupled network and will yield, again, the 1/

√
N scaling power. These cases are,

however, the exception to the rule, so the 1/N scale holds, in general, with unidirec-
tional coupling.

In the bidirectional coupling case we get a similar version of Eq. (9.55) for phase
drift:

Abidir
�̂δφ = �̂η, (9.61)

where the matrix Abidir is the circulant matrix

Abidir =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

iw − aλμ aλμ 0 0 . . . 0
aλμ iw − aλμ aλμ 0 . . . 0

...
...

. . .
. . . . . .

...
... . . .

. . .
. . . 0

0 . . . aλμ iw − aλμ aλμ
aλμ 0 . . . aλμ iw − aλμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This matrix is also invertible [23] and the computation (not shown for brevity)
of the power spectral of phase drift per oscillator takes exactly the same form as in
Eq. (9.58), except that the terms a−1

k j correspond to the entries of the new inverse

matrix A−1
bidir. Thus, the phase drift of the network is also given by Eq. (9.60). It

follows that phase drift in the bidirectional case also scales as 1/N .

9.7.5 Fundamental Limit

In this section we address the more transcendental question of why the standard
traveling wave pattern, in which adjacent cells oscillate out-of-phase by a constant
amount, mainly T/N , yield the best scaling in terms of phase drift. We also address
the issue of whether 1/N is the fundamental limit of phase drift reduction that can
be achieved by a network configuration.

To get insight into the answers to these questions, we first explore other coupling
configurations. For instant, consider all-to-all coupling, which leads to a network
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with SN symmetry, where SN is the group of permutations of N objects. In this case,
there are also standingwaves and discrete rotatingwaves that emerge via bifurcations
that break the SN symmetry. As before, in the case of discrete rotating waves (same
wave forms and constant phase differences) one can show that the matrix associated
with the solution of the phase drift takes the form

Aall-to-all =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

iw − aλμ aλμ aλμ aλμ . . . aλμ
aλμ iw − aλμ aλμ aλμ . . . aλμ

...
...

. . .
. . . . . .

...
... . . .

. . .
. . . aλμ

aλμ . . . aλμ iw − aλμ aλμ
aλμ aλμ . . . aλμ iw − aλμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This matrix is invertible [23] and the computation of the power spectral of phase
drift per oscillator leads, once again, to a solution that takes the same form as in
Eq. (9.58), except that the terms a−1

k j correspond to the entries of the new inverse

matrix A−1
all-to-all. Consequently, the phase drift of the network follows a 1/N scaling

given by Eq. (9.60).
Other linear coupling configurations will produce variations of the A matrix.

Those variations will appear, however, only in the scalar terms a−1
k j of the power

spectral of phase drift per oscillator given by Eq. (9.58). For instance, a coupling
configuration with nearest neighbors and second-nearest neighbor coupling will lead
to a banded matrix that will only change a few of the scalar values in Eq. (9.58). For
these reasons, the phase drift of the network will continue to follow a 1/N scaling
law.
Synchronization State. Two of the most common mechanisms that can lead to oscil-
latory behavior in a network system include either symmetry-breaking Hopf bifurca-
tions, which can be associated with collective patterns of oscillations, or symmetry-
preserving Hopf bifurcations, which lead to complete synchronization states. So
far we have considered the former case in all calculations of phase drifts. We now
consider the latter case. Our aim is to explain why the synchronization state of an
ensemble of N oscillators does not perform any better, in terms of phase drift reduc-
tion, than a single one. At first glance one may think the contrary. That is, that the
synchronization state could produce a better phase drift reduction because the coher-
ence of the collective pattern could, in principle, attenuate more the negative effects
of noise. However, the simulations in [21] show us otherwise. If we examine the
phase Eq. (9.53) for unidirectional coupling (or for bidirectional coupling), we can
see that when the oscillators are synchronized, i.e., αk = 0 and βk = 0, then the cor-
responding phase equations reduce to that of a single uncoupled oscillator Eq. (9.49),
which we already showed earlier to yield a 1/

√
N scaling in phase drift reduction.

For this reason alone the synchronization state cannot improve performance.
Finally, we have now arrived at the most critical question of whether 1/N is the

fundamental limit of phase-drift reduction or whether there is a network configura-
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tion that can produce better results. To address this question, we observe first that the
previous computations of phase drift show the parameter μ entering as a multiplica-
tive factor of the coupling strength λ in the related matrices A. This happens for all
different linear-coupling topologies. Furthermore, as the size N of the network tends
to infinity, μ tends to unity. It follows that the coupling strength reaches a maximum
as N approaches infinity. The actual value of the term aλμ in the matrix A only
affects the scalar component of the power spectral per oscillator, as can be seen in
Eq. (9.58). In other words, the structure of the matrix A may change for different
linear-coupling topologies but the changes do not affect the scaling law. Hence, 1/N
is indeed the fundamental limit that can be achieved by a network approach with
linear coupling.

9.8 Stochastic Model of Flame Instability

In this section we investigate the effects of noise on a model of cellular pattern
formation. As an example, we consider a stochastic (Langevin) version of a generic
example of a cellular-pattern forming dynamical system, known as the Kuramoto-
Sivashinsky (KS) equation

∂u

∂t
= η1u − (1 + ∇2)2u − η2(∇u)2 − η3u

3 + ξ(�x, t), (9.62)

which is the same as Eq. (8.33), except for the stochastic term ξ(�x, t) that is now
included. Recall fromChap. 8 that u = u(�x, t) represents the perturbation of a planar
front (which is normally assumed to be a flame front) in the direction of propagation,
η1 measures the strength of the perturbation force, η2 is a parameter associated with
growth in the direction normal to the domain (burner) of the front, η3u3 is a term that is
added to help stabilize the numerical integration.This time, the term ξ(�x, t) represents
Gaussian white noise, which models thermal fluctuations, dimensionless in space
and time. We assume ξ(�x, t) to be distributed with zero mean 〈ξ(�x, t)〉 = 0, and to
be uncorrelated over space and time, i.e., 〈ξ(�x, t)ξ(�x ′, t ′)〉 = 2Dδ(�x − �x ′)δ(t − t ′),
where D is a measure of the intensity of the noise, 〈·〉 represents the time-average
over a range of observations.

9.8.1 Computer Simulations

Numerical integration of Eq. (9.62) shows that the typical ordered state that appears
changes (as the radius of the circular domain increases) from a single ring of cells to
concentric rings of cells, see Fig. 9.13.



470 9 Stochastic Models

Fig. 9.13 Generic behavior of the KS model for various parameter values of radius and noise
Intensity. Notation: S = Stationary, U = Unsteady, I = Intermittent State, R = Rotation. Noise
intensity, D = σ2/2, is in the range [0.00, 2.5E-04]. This range represents low noise levels, relative
to the dynamic range of u, which in the Kuramoto-Sivashinsky model is of order 10. As the noise
intensity increases, the radius-parameter range of complex dynamic patterns is extended; when the
intensity reaches D = 1.25 × 10−3 no static patterns are observed. For each of these simulations
η1 = 0.32, η2 = 1.0, η2 = 0.017, 4.1 ≤ radius ≤ 4.35, and D ≤ 0.5

Occasionally, dynamic states are also observed in the transition from from one
stationary pattern to another. Related studies [24] have shown that uniformly rotating
and modulated rotating single-ring states with k cells are typically generated by the
interaction of two steady-state modes with Fourier wave numbers in a k : 2k ratio.
For simplicity, let’s focus our attention around a 1 : 2 mode interaction, though the
analysis we are about to conduct still capturesmany essential features of the effects of
noise on larger patterns. Figure 9.13 illustrates the patterns, and transitions between
them, which occur near a radius R = 4.35.

Without noise, i.e., noise amplitude D = 0, a one-cell rotating state (1R) appears
in the transition from a one-cell stationary state to a two-cell stationary state, just
as predicted by the corresponding 1 : 2 mode interaction. As the noise intensity
increases, the domain of existence of the 1R-state increases and additional patterns
emerge. For very weak noise, an unsteady dynamic pattern (1U) appears between
the 1S and 1R states. The 1U pattern does not sustain rotations; instead, the pattern
rocks back and forth.With increased noise intensity, a one-cell rotating pattern (1RI),
which intermittently changes its direction of rotation, is observed between the 1U
and 1R patterns. Near the bifurcation point, where the 1RI state forms, there are
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two bistable branches of rotating states created by symmetry, one branch for each
direction of rotation.Which branch is observed depends mainly on initial conditions.
Noise appears to act as a switch, inducing recurrent transitions between these two
branches. Between the 1R and 2S (or, for higher noise intensities, 2U) patterns, an
intermittent 1–2 cell pattern forms. This dynamic pattern is very peculiar: one of
the two cells in the 2S state is extinguished; the remaining one-cell state is short-
lived, the pattern immediately splits into a new 2S-state, the orientation of which is
roughly a quarter-rotation of the previous 2S-state. Each appearance of the 2S state
lasts an irregular amount of time, ranging from a few to several hundreds of frames.
This is qualitative evidence of a heteroclinic connection where the stable (unstable)
manifold of a two-cell equilibrium is also the unstable (stable) manifold of another
two-cell equilibrium.

9.8.2 Mode Decomposition

In order to explain, quantitatively, the origin and formation mechanisms of the noise-
induced intermittent pattern shown in Fig. 9.13, a Proper Orthogonal Decomposition
analysis of an ensemble, made up of about 4000 computer-simulated spatio-temporal
data points (frames), is performed for each individual case. The method of snapshots
(see Chap. 8) is employed to extract time-independent orthonormal basis functions,
�k(x), and time-dependent orthonormal amplitude coefficients, ak(ti ), such that the
reconstruction

u(x, ti ) =
∞∑

k=1

ak(ti )�k(x) , i = 1, . . . , M

is optimal in the sense that the average least square truncation error. To ensure that
the POD steady-state modes contain the correct symmetry properties, we have taken
special care of including the average over the symmetry group,O(2), of the numerical
simulations, in the ensemble average. In all four cases, shown in Fig. 9.13, the POD
analysis reveals that two pairs of modes with wave numbers in a 1:2 ratio capture
most of the dynamics, see Fig. 9.14.

The time-average (considered mode �0) is shown first followed by four POD
modes, �1–�4, with the highest percentage of energy (see Appendix for an exact
definition). The actual amount of energy in each mode is indicated below each mode.
Each mode shows some amount of symmetry. The symmetry of the time-average,
in particular, reflects the O(2)-symmetry of the burner, even though none of the
instantaneous snapshots has this symmetry. This feature is studied in more detail in.
�1 and �2 show D1-symmetry, meaning that one complete revolution leaves them
unchanged, while �3 and �4 show D2-symmetry, i.e., the patterns are restored after
half a revolution. Observe also that the energy is equally distributed among these
two pairs of modes, which together capture almost 90% of the original behavior.
It follows that intermittent behavior in all three cases is created from the mutual
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interaction of two invariant eigenspaces,

V1 = span{�1,�2}, V2 = span{�3,�4},

whose dihedral symmetries are in a 1 : 2 ratio, just as expected from direct inspection
of the transition diagram of Fig. 9.13.

Next we examine results of the POD decomposition of the 1-2I intermittent state.
Figure 9.15 shows the time-dependent coefficients associated with each individual
POD mode. To help visualize the actual transitions, we have added two markers,
a green circle and a red circle. The time between the green (red) circle and the red
(green) define the beginning and end of a 2-cell (1-cell) pattern, respectively. Observe
that when the oscillations in a1(t) and a2(t) have large amplitudes relative to those
of a3 and a4, the 1-cell pattern shows up. The opposite relation, small amplitude in
a1, a2 and large amplitude in a3, a4, leads to the appearance of the 2-cell pattern.

The heteroclinic saddle-node connections that underlie the transitions between the
1-cell pattern and the 2-cell state, can be observed better in the phase-space portrait
of Fig. 9.16. Black arrows indicate the approximate direction of the flow around the
two saddle-nodes that are associated with a 2-cell state, while there are four saddle-
nodes that correspond to the 1-cell state. This difference deserves an explanation.
Once a 2-cell state appears in the simulations, there is only one distinct orthogonal
position in which the same pattern can reappear. On the other hand, a 1-cell state
has four orthogonally distinct positions where it can reappear. These geometric facts
determine the structure of the phase portrait of Fig. 9.16.

9.8.3 Amplitude Equations

As it was mentioned before, all three intermittent patterns, 1RI, 1U, and 1-2I, emerge
from themutual interaction of two pairs of spatial modes, {�1,�2} − {�3,�4}, with
wave numbers in a 1:2 ratio, while the time evolution of each individual pattern is
determined by the amplitude coefficients a1(t)-a4(t) that are associated with the

Fig. 9.14 A proper orthogonal decomposition analysis reveals that all four patterns of Fig. 9.13
are created from the mutual interaction of two pairs of spatial modes whose wave numbers are in a
1:2 ratio. These modes were obtained using computer-simulated ensembles of 4000 data set points
of each individual pattern
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Fig. 9.15 Amplitude coefficients associated with the POD modes of the intermittent state 1-2I of
Fig. 9.13. Horizontal axis denotes time. Markers indicate beginning (green) and end (red) of a 2-cell
pattern

spatial modes �1 − �4, respectively. The amplitude equations that govern the evo-
lution of the time-dependent coefficients are derived from the 1-to-2 Fourier-mode
interaction in a system with O(2)–symmetry, i.e., the symmetry group of rotations
and reflections of the circular domain. The deterministic version of these ampli-
tude equations in Birkhoff Normal Form has been thoroughly studied by Armbruster
et al. [25–27]. The Langevin version below

ż1 = z̄1z2 + z1(μ1 + e11|z1|2 + e12|z2|2) + εη1(t)
ż2 = ±z21 + z2(μ2 + e21|z1|2 + e22|z2|2) + εη2(t),

(9.63)

where η1(t) and η2(t) are Gaussian white noise functions, uncorrelated with zero
mean and with amplitude ε. This model has also been considered by Stone and
Holmes [28] in a study of the effects of noise on heteroclinic cycles. Let us start
with the 1R pattern. According to the transitions seen in Fig. 9.13, it is reasonable to
associate the temporal evolution of the 1R pattern with that of a traveling wave of the
deterministic normal forms, i.e., η1 = 0 and η2 = 0 in (9.63). For convenience, we
let z j = reθ j i and φ = 2θ1 − θ2, so that we can rewrite (9.63) in polar coordinates
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Fig. 9.16 Phase-space portrait from time-dependent POD coefficients for an intermittent state 1-2I
capture saddle-node connections between the stable and unstable manifolds associated with each
individual ordered pattern, one with one cell and one with two cells

ṙ1 = r1r2 cosφ + r1(μ2 + e11r21 + e12r22 ) + εη1(t)
ṙ2 = ±r21 cosφ + r2(μ4 + e21r21 + e22r22 ) + εη2(t)

φ̇ = −
(
2r2 ± r21

r2

)
sin φ.

(9.64)

Observe that the noise functions η1 and η2 do not appear, explicitly, in the last
equation in (9.64), which governs the evolution of the phase-difference variable.
We will show that noise can, however, change the evolution of the phase difference
through the radial components r1 and r2. Consider the noise-free system: η1 = 0 and
η2 = 0. Traveling Waves (TW) are equilibria of (9.63) in which the phase difference
remains constant, thoughφ2 �= 0,π. In physical space, TWs correspond to uniformly
rotating patterns produced by evolution equations; e.g., the 1R pattern that appears
in simulations of the KS model (9.62). Following Armbruster et al. [25], traveling
waves (of the deterministic system) are created via a pitchfork bifurcation from the
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π-mixed mode solution (r1 �= 0, r2 �= 0, φ = π) when 2r4 ± r22/r4 = 0, and φ2 = π,
so that they only exist in the “−” case or when r21 = 2r22 . Letting e = 4e11 + 2e12 +
2e21 + e22, it can be shown that TW solutions of (9.63), without noise, exist and are
stable for

− 2μ1 − eμ2
1 + O(μ3

1) < μ2 < μ1

(
1 + 9(e22 − e12)

e − 3(e22 − e12)

)
+ O(μ2

1). (9.65)

Consider now the noisy system. Direct calculations of the equilibria of (9.64) lead
to

λr2 + e r32 + ση3(t) = 0, (9.66)

where λ = 2μ1 + μ2 and η3 is also a Gaussian white noise function, uncorrelated
with zero mean, but with amplitude σ = √

3ε. When σ = 0, Eq. (9.66) reduces to the
normal form equation for the pitchfork bifurcation that underlie the birth of the TWs
of the deterministic system. Amore critical observation is the fact that additive white
noise does not modify qualitatively the solution set of a codimension-one, perfect,
pitchfork bifurcation [29]. It follows that TW solutions, and their stability properties,
of the noisy system (9.63) necessarily coincidewith those of the deterministic,σ = 0,
system; and Eq. (9.65) is still valid for the noisy system. But if the 1RI pattern is
indeed a noise-perturbed TW, then we seem to have an apparent contradiction: how
can noise change the direction of rotation of the 1RI state if noise cannot modify
the qualitative properties of the pitchfork bifurcations that lead to traveling waves?
To clarify this subtle issue, we need to take into account that equilibria of (9.64)
are now described by a probability density function p(ri , t). In particular, p(r2, t) is
governed by the following Fokker-Planck equation

∂

∂t
p(r2, t) = − ∂

∂r

[
(λr2 + er32 )p(r2, t)

]+ σ2

2

∂2

∂r2
p(r2, t). (9.67)

Traveling waves solutions are described by stationary solutions of (9.67), i.e.,
solutions of ∂t p(r2, t) = 0, which, in turn, yields the stationary probability density
function

ps(r2) = N exp

[(
2

σ2

)(
λ

r22
2

+ e
r42
4

)]
. (9.68)

Computer simulations, see Fig. 9.17, show that this function changes from single
to double peaked as λ increases across zero.

In both cases, λ < 0 and λ > 0, the location of the peaks always coincide with
the steady states of the deterministic system. As predicted by theory, noise does not
modify the qualitative characteristics of the underlying pitchfork bifurcation. How-
ever, noise can change the probability distribution around the steady-state r2 = 0.
Assumingλ > 0, we notice that as noise intensity increases from zero, the proportion
of time spent by a typical solution of (9.64) around r2 = 0 increases continuously
until it reaches a maximum, at which time the phase-difference angle is no longer
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Fig. 9.17 Stationary probability density of the radial component of the pitchfork bifurcation that
leads to TW solutions

at an equilibrium, thus triggering a transition that changes the sign of the phase-
difference angle, and ultimately, the direction of rotation of the wave. This cycle of
events repeats itself at random time-intervals as the system dynamics in r2 change
back and forth between zero and the values of the deterministic system. As for the 1U
pattern, since standing waves lie on the invariant subspace φ = 0, or φ = π, noise
perturbations of the radial components r1 and r2 cannot destroy the invariance of
the subspaces because they do not enter, explicitly, into the dynamics of the phase
angle. Consequently, the only possible effect of noise variations in r1 and r2 is to
create small oscillations in the phase-angle variable φ, thus rocking the wave back
and forth.

We now turn our attention to the 1-2I pattern, studied by Stone and Holmes [28].
Among their findings, most relevant to the analysis of the 1RI pattern, is the real-
ization that certain intermittent states can be described as noise-induced “stochastic
limit cycles” that are created from the perturbation of heteroclinic orbits connecting
saddle-node equilibria of the deterministic (ε = 0) normal forms.

Figure 9.18 depicts the phase-space projection of a typical trajectory of (9.63) onto
the first two components of z1 and the x-component of z2, which are the analogous
of the POD amplitude coefficients a1, a2 and a3, respectively. The reconstructed
pattern, calculated through the following equation,
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Fig. 9.18 (Top) Phase-space depiction of a heteroclinic cycle found in the Kuramoto-
Sivashinsky. (Bottom) Phase-space reconstruction from normal form equations. Parameters are:
R = 4.285 (radius of domain of integration), D = 0.0008 (noise intensity), and (η1, η2, η3) =
(0.32, 1.0, 0.17)

Urec(x, ti ) =
4∑

k=1

zk(ti )�k(x), i = 1, . . . , M,

where M is the size of the ensemble, 4000 frames in this case, is also shown immedi-
ately below the phase-space projection. The resemblance of the phase space with the
PODphase-space projection of Fig. 9.16 is clear.More importantly, the reconstructed
intermittent state is qualitatively similar, up to a rotation, to the PDE simulations.
The cell rotates uniformly and, intermittently changes direction of rotation. In sum-
mary, numerical calculations and the phase-space reconstruction of Fig. 9.18, are
strong evidence that the 1-2I intermittent state is indeed a stochastic limit cycle cre-
ated from the perturbation of a heteroclinic connection. Such connections would be
unobservable under noise-free conditions.
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9.9 Exercises

Exercise 9.1 A stochastic birth only process could be given by the differential equa-
tion

d Pn

dt
+ λN Pn = λ(N − 1)PN−1,

with

PN (0) =
{
0 N �= N0

1 N = N0
,

where PN (t) is the probability that there are exactly N individuals in a population.
The solution was given by

PN0(t) = e−λN0t

PN0+1(t) = N0e−λN0t (1 − e−λt )

...

PN0+ j (t) = N0(N0 + 1) · · · (N0 + j − 1)

j ! e−λN0t (1 − e−λt ) j .

Use mathematical induction to prove that this last formula holds for all j .

Exercise 9.2 The expected population at time t , E(t), is obtained from the formula

E(t) =
∞∑
j=0

(N0 + j)PN0+ j (t).

a. Can you explain why this is valid using probabilistic ideas?

b. Show that E(t) = N0eλt .

c. Explain the significance of Part b.

Exercise 9.3 Consider the equation above for PN0+ j (t). Assume that N0 = 10, 000.
Estimate λ, if it is observed that a total of 4500 births occur in 20 days. [Hint: See
the previous exercise.]

Exercise 9.4 Since 1973, the British Forestry Commission has surveyed for the
presence of the American gray squirrel (Sciurus carolinensis Gmelin) and the native
red squirrel (Sciurus vulgaris L.). From two consecutive years of data for 10 km
square regions across Great Britain, data were collected on movement of the two
types of squirrels. The transition matrix for red squirrels, gray squirrels, both, or
neither in that order was given by
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T =

⎛
⎜⎜⎝
0.8797 0.0382 0.0527 0.0008
0.0212 0.8002 0.0041 0.0143
0.0981 0.0273 0.8802 0.0527
0.0010 0.1343 0.0630 0.9322

⎞
⎟⎟⎠ .

Find the equilibrium distribution of squirrels based on this transition matrix. Does
this model suggest that the invasive gray species will significantly displace the native
red squirrel over long periods of time?

Exercise 9.5 An enclosed area is divided into four regions with varying habitats.
One hundred tagged frogs are released into the first region. Earlier experiments found
that on average the movement of frogs each day about the four regions satisfied the
transition model given by

⎛
⎜⎜⎝

f1(n + 1)
f2(n + 1)
f3(n + 1)
f4(n + 1)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0.42 0.16 0.19 0.16
0.07 0.38 0.24 0.13
0.34 0.19 0.51 0.27
0.17 0.27 0.06 0.44

⎞
⎟⎟⎠

⎛
⎜⎜⎝

f1(n)

f2(n)

f3(n)

f4(n)

⎞
⎟⎟⎠

a. Give the expected distribution of the tagged frogs after 1, 2, 5, and 10 days.

b. What is the expected distribution of the frogs after a long period of time?Which of
the four regions is the most suitable habitat and which is the least suitable for these
frogs?

Exercise 9.6 The following equation serves as a model for the concentration of
cGMP, which is a common regulator of ion channel conductance, glycogenolysis,
and cellular apoptosis. It serves to relax smooth muscle tissues.

d[cGMP]
dt

= −kPDE[cGMP] + γ, (9.69)

where kP DE represents the maximum cGMP hydrolysis rate, in which PDE stands
for “phosphodiesterases”, which hydrilyze the cyclic nucleotide into GMP, and γ is
a constant.

(a) Let
kPDE = 〈kPDE〉 + ξkPDE(t),

where ξkPDE(t) represents a small colored noise perturbation off of the mean
value 〈kPDE〉, with autocorrelation function given by

〈ξkPDE(t) ξkPDE(s)〉 = Ae(−k|t−s|).

Show that the model Eq. (9.69) can be rewritten in Langevin form
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dx

dt
= αx + γ + μ x η(t), (9.70)

where α and μ are constant parameters, and

〈η(t) η(s)〉 = Ae(−|t−s|/τc).

(b) Rewrite Eq. (9.70) as
dx

dt
= αx + γ + μ x η(t),

dη

dt
= −η(t)

τc
+

√
2D

τc
ξ(t),

where ξ(t) is Gaussian white noise function of zero mean. Then apply the Euler-
Maruyama algorithm to solve Eq. (9.70). Plot the results.

Exercise 9.7 Let C(t) denote the concentration of a drug present at time t in a
pharmokinetic, one-compartment, system. A stochastic first-order linear equation
describing the loss of the substance from the system is

dC

dt
= −ρ(t) C(t),

where η(t) is the transfer rate subject to stochastic perturbations.

(a) Split the transfer rate, ρ(t) into deterministic, k, and stochastic components,
η(t), by letting ρ(t) = k + γη(t), where η(t) is assumed to be a Gaussian white
noise function scaled by the constant parameter γ. Write the resulting equation
in Langevin form

dC(t)

dt
= −kC(t) + γC(t) η(t).

Let k = 4 and γ = 0. Assume the initial condition C(0) = 1 and find an analyt-
ical solution. Hint: Apply Itô’s formula.

(b) Let γ = 2 and solve this time the stochastic differential equation. Plot and com-
pare the results of part (a) and (b).

Exercise 9.8 A more realistic version of the pharmokinetic, one-compartment,
model introduced above, is when the deterministic component, k is randomly per-
turbed by a Gaussian white noise function ξ(t). This situation leads to a model of
the form

dC

dt
= −k C(t),

dk

dt
= ke − k(t) + γ

√
k(t) ξ(t),
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where ke is a mean value for the constant k. Let ke = 4 and γ = 2. Assume initial
conditions C(0) = 1 and k(0) = 3.5. Find a numerical solution and compare the
results with those of the previous model.

Exercise 9.9 The Vasicek interest rate model [30, 31] can be expressed in Langevin
form

dr(t)

dt
= a(b − r(t)) + σ ξ(t)

where a represents speed of the reversion towards a mean, b is the long-term level
of the mean, and σ describes volatility. Assume ξ(t) is Gaussian white noise of zero
mean.

(a) Find an analytical solution as follows.
Step 1: Apply the change of variables, x(t) = r(t) − b, noting that dx = dr ,
and rewrite a new stochastic equation in x .
Step 2: Let y = eat x and rewrite the SDE in x in terms of y.
Step 3: Solve the resulting equation for y, then solve for x by reversing the
change of variables, i.e., let r(t) = x(t) + b.

(b) Solve numerically for r(t).
(c) Compare analytical and numerical solutions.

Exercise 9.10 The Cox-Ingersoll-Ross [30, 31] interest rate model can also be
expressed in Langevin form

dr(t)

dt
= a(b − r(t)) + σ

√
r(t) ξ(t)

where a represents speed of adjustment towards a mean, b is the long-term level of
the mean, and σ describes volatility. Assume ξ(t) is Gaussian white noise of zero
mean.

(a) Find an analytical solution. Hint: apply a suitable change of coordinates as in
the previous problem.

(b) Solve numerically for r(t).
(c) Compare the results against those of the Vasicek model.

Exercise 9.11 The state equations for a Stuart-Landau oscillator with colored noise
are

dφ

dt
= α − β + ρ2 + ρη(t)

dρ

dt
= ρ − ρ3 + ρ2η(t)

dη

dt
= −η(t)

τc
+

√
2D

τc
ξ(t),

(9.71)

whereα and β are parameters that define the oscillator free running frequency. Apply
theEuler-Maruyama algorithm to numerically solve forφ(t) andρ(t). Plot time series
for φ(t) and ρ(t), as well as phase plots on the plane (φ(t), ρ(t)).
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Exercise 9.12 A stochastic model for a van der Pol oscillator subject to environ-
mental and internal noise takes the form

dv

dt̃
= u

du

dt̃
= − 1

LC
v − 1

C
g′(v)u − 1

C
ν(t̃),

(9.72)

where L and C are, respectively, the inductance and capacitors in the circuit, g(v) =
−v + v3/3 is the characteristic of a nonlinear resistor, and ν(t) is a source of colored
noise, which is modulated by the current through the capacitor. That is

ν(t) =
√

C

L
u η(t)

(a) Apply the following change of coordinates

t = 1√
LC

t̃, x1 = v, x2 = √
LC u,

to show that the original model Eq. (9.72) can be transformed to Langevin form

dx1
dt

= x2

dx2
dt

= −x1 + α(1 − x2
1 )x2 + x2η(t),

dη

dt
= −η(t)

τc
+

√
2D

τc
ξ(t),

(9.73)

where α = √
L/C .

(b) Solve Eq. (9.73) numerically by using the Euler-Maruyama method and plot the
phase-space dynamics on the plane (x1, x2).

Exercise 9.13 Transform the stochastic model for the van der Pol oscillator,
Eq. (9.73), to an equivalent system with white noise

dx1
dt

= x2

dx2
dt

= −x1 + α(1 − x2
1 )x2 + D2

2
x2 + Dx2ξ(t).

Then compute the Fokker-Plank equation, p(x1, x2, t), and solve it numerically.

Exercise 9.14 The stochastic version of a single spring-mass system, of massm and
spring constant k, is given by
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dx

dt
= v(t)

m
dv

dt
= −kx(t) − b(v(t) +

√
2γ2λ η(t)

dη

dt
= −η(t)

τc
+

√
2D

τc
ξ(t),

where x(t) measures the displacement of the mass from equilibrium, v(t) is the
velocity.Assume k = 1, b = 0.5,γ2 = 0.25,λ = 0.4,m = 20, x(0) = 6, and v(0) =
1. Find a numerical solution and plot the results.

Exercise 9.15 A stochastic model for the phase-amplitude equations of a nonlinear
oscillator is

dφ

dt
= α +

(
D2

2
− β

)
ρ2 + Dη(t)

dρ

dt
= ρ + (D − 1)ρ3 + Dρ2η(t),

where φ is phase and ρ is amplitude, α and β are parameters, D is the diffusion
coefficient (i.e., noise intensity), and η is Gaussian white noise.

Observe that the amplitude equation decouples from the phase equations. Thus,
compute the 1DFokker-Planck equation, p(ρ, t), and calculate its stationary solution.

Exercise 9.16 The Langevin equation for the freely diffusing ions in a microelec-
trode recessed into a surface is

dx

dt
= η(t),

where η(t) is a Gaussian white noise function with zero mean and correlation

〈η(t) η(s)〉 = 2Dδ(t − s).

(a) Write the Fokker-Planck equation for the for the probability distribution of the
concentration of ions. That is, assume c(x, t) = p(x, t), where x(t) represents
the vertical position of the electrode.

(b) Assume the concentration of ions in bulk to be cb. Consider the electrode to be
at x = 0, with the flat surface at x = L , so that the boundary conditions for the
concentration are

c(0, t) = 0, c(L , t) = cb.

Find the steady-state solution that satisfies these boundary conditions.

Exercise 9.17 Consider the Langevin equation

dx(t)

dt
= f (x(t)) + g(x(t)) ξ(t),

with f (x) = ax − bx3 and g(x) = Qx , where a, b, Q > 0.



484 9 Stochastic Models

(a) Calculate Itô’s version of the Fokker-Planck equation.
(b) Find an analytical expression for the steady-state solution, ps(x). Hint: set

y(x) = g2(x)ps(x) and solve for y(x).

Exercise 9.18 Consider the two spring-mass system studied in Chap. 6.

(a) Write a stochastic version of the Model Eq. (6.4) as a first-order system of
equations on the state variables [x1, x2, x3, x4]T .

(b) Assumem = 1, c = 0.1, k = 1.Numerically solve the resulting stochasticmodel
and plot the results on various projections of the phase space, i.e., (x1, x2),
(x2, x4), and (x1, x3).

(c) Change the damping coefficient to c = 0 and repeat part (b).
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Chapter 10
Model Reduction and Simplification

The process of deriving a model, either through first principles or through data
fitting, or through any other valid technique, typically leads to many more equations,
variables or parameters, that may be needed to describe the behavior of a given
phenomenon. Thus, it is not surprising that one of themost commonly asked question
in mathematical modeling is

How can we reduce a mathematical model to a simpler form that can be more amenable to
analysis?

The words reduction and simplificationmay have similar connotations but, from
a mathematical modeling standpoint, there is a clear distinction among them, which
we should discuss in more detail. In any generic version of a model, either in the
form of ODEs or PDEs, certain variables may approach, asymptotically, zero or a
constant value or they may vary slowly compared to other variables. In these cases, it
might be possible to capture the spatio-temporal evolution of the phenomenon with
fewer equations. Consider, for example, the following model in the form of a system
of ODEs

ẋ = μ − x2

ẏ = −y.
(10.1)

Without doing any complicated calculations, we can see that the two equations
decoupled. That is, the values of x do not affect those of y and vice versa. In this
sense, we can think of the 2D model (10.1) as being, effectively, a 1D system with
two equations that can be treated separately. Furthermore, the solution for the second
equation is y(t) = y0e−t . Thus, y(t) → 0 as t → ∞, while x(t) goes through a
saddle-node bifurcation at μ = 0. When μ < 0 there are no solutions but for μ ≥ 0
there are two equilibrium points at (x = ±√

μ, y = 0). The one at x = −√
μ is

unstable while the other equilibrium at x = √
μ is stable. Figure 10.1 illustrates the

various phase portraits as μ changes values.
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Fig. 10.1 Saddle node bifurcation in 2D

It is then straightforward to see that the original model (10.1) can be reduced to a
single equation, ẋ = μ − x2. However obvious this might be, in general, it can be a
daunting task to identify which equations can be eliminated from the original model.
And often times the reduction of amodelmay not even involve eliminating equations.
But, rather, reduction to invariant subspaces of lower dimension than the original
phase space. On the other hand, simplification of a model may only involve reducing
the number of parameters by rewriting the model equations in dimensionless form
or eliminating certain terms, e.g., higher order terms, that may be negligible near the
origin or near an equilibrium point.

A popular technique for deriving a reduced order model is the Center Manifold.
This technique is broader since it can be applied to infinite-dimensional (evolution)
models or to a vector field. In this book we focus on the latter case and consider a
vector field of the form

dX

dt
= F(X), (10.2)

where X ∈ R
n . Next, we describe the technical details of the reduction.
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10.1 Center Manifold Reduction

In a nutshell, this technique is based on the existence of an invariant manifold, e.g.,
the Center Manifold, identified as Wc, and assumed to be located near a fixed point
of (10.2). Themanifold is invariant in the sense that all solution trajectorieswith initial
conditions on itwill remain on themanifold for all times. But ifwe assume all solution
trajectories with initial conditions transverse to the manifold to be attracted towards
(or repelled from) the manifold then we could reduce the dynamics of the original
model to that of a lower-dimensional model by restricting the vector field (10.2) to
the state variables that span the manifold. Figure 10.2 illustrates this scenario. On
the manifold itself, there is a limit cycle solution. The reduced order model should
capture, in principle, only the dynamics of the limit cycle solution.

The opposite scenario, in which the eigenvalues transverse to the manifold have
positive real part is also possible. In that case, the manifold would be unstable so
nearby solutions will move away from it. In both cases, however, the invariant prop-
erties of the manifold guarantee that solution trajectories with initial conditions on
the manifold will remain on it at all times. Nevertheless, we wish to emphasize that
this is a local procedure because it works only in the neighborhood of an equilibrium
point. Next we describe the procedure to derive the reduced order model.

We start by assuming the n-dimensional phase-space X ∈ R
n to be decomposed

as n = nc + ns + nu , where nc, ns and nu denote, respectively, the dimensions of the
subspaces in which the real-part of the eigenvalues are zero, negative and positive.
We consider the case ns > 0 and nu = 0, so that the vector field can be split in the
form

ẋ1 = Ax1 + f (x1, x2)
ẋ2 = Bx2 + g(x1, x2),

(10.3)

where x1 ∈ R
nc and x2 ∈ R

ns .
We also assume Eq. (10.3) to have a nonhyperbolic fixed point, i.e., a fixed point

at which, at least, one eigenvalue has zero real part with a corresponding eigenvector

Fig. 10.2 Schematic
representation of a Center
Manifold containing a limit
cycle. In this scenario, all
solution trajectories with
initial conditions outside the
manifold collapse onto the
manifold and onto the limit
cycle solution

Wc
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or center eigenspace Ec. Without loss of generality, assume the fixed point to be at
(x1, x2) = (0, 0), so that

f (0, 0) = 0, Df (0, 0) = 0
g(0, 0) = 0, Dg(0, 0) = 0,

where Df and Dg are the Jacobian matrix ofCr (r ≥ 2) continuous functions, f and
g. In the above formulation, A ∈ R

nc×nc is the matrix that contains the eigenvalues
with zero real parts, in fact there are nc of such eigenvalues. Since nu = 0 there are no
eigenvalues with positive real part, only eigenvalues with negative real part, which
are those of B ∈ R

ns×ns .
Under the above conditions, the Center Manifold Theorem [1, 2] predicts the

existence of an invariant centermanifoldWc(0), which is tangent to Ec. Themanifold
is formally defined as follows.

Definition 10.1 A center manifold, Wc(0), of the vector field (10.3) is an invariant
manifold, which can be locally described as follows

Wc(0) = {(x1, x2) ∈ (Rnc × R
ns |x2 = h(x1), |x1| < δ, h(0) = 0, Dh(0) = 0},

where δ is small.

The requirements h(0) = 0 and Dh(0) = 0 guarantee that Wc(0) is tangent to
the center eigenspace Ec at the fixed point (0, 0). Transverse toWc(0), the flow will
move towards it since the eigenvalues have negative real part. The case nu > 0 and
ns = 0 is similar, the main difference being the center manifold to be unstable, so
that solution trajectories with initial conditions near the manifold will asymptotically
diverge away.

The emphasis on this book is to describe, mainly, the procedure to derive the
reduced order model. Readers interested in the mathematical theory of the existence
of the center manifold Wc(0) are referred to [3].

10.1.1 Computing the Center Manifold

Next we show how to compute the center manifold x2 = h(x1). Since (x1, x2) ∈
Wc(0) then (ẋ1, ẋ2) ∈ Wc(0). This last point is obtained by differentiating directly
x2 = h(x1) to obtain

ẋ2 = Dh(x1)ẋ1. (10.4)

Both sets of points (x1, x2) and (ẋ1, ẋ2) are still governed by the original vector
field (10.3). Thus, we can write

ẋ1 = Ax1 + f (x1, h(x1))
ẋ2 = Bh(x1) + g(x1, h(x1)).
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Substituting this last set of equations into Eq. (10.4) we get

Dh(x1) [Ax1 + f (x1, h(x1))] − Bh(x1) − g(x1, h(x1)) = 0. (10.5)

Solving Eq. (10.5) for h(x) leads directly to the graph of the Center Manifold.
And the actual form of the reduced order model is given by the existence theorem [2]
of the Center Manifold. Here we quote the theorem.

Theorem 10.1 (Existence) Under the conditions described above, there exists a Cr

center manifold for the vector field (10.3). Furthermore, the dynamics restricted to
this manifold leads to the reduced-order, nc-dimensional, model of the form

u̇ = Au + f (u, h(u)), u ∈ R
nc . (10.6)

Proof See Carr [3].

Another theorembyCarr also shows that as time evolves the solution (x1(t), x2(t))
of the original model converges to (u(t), h(u(t))). More importantly, the stability
properties of the solution of the original model are preserved by those of the reduced,
low-dimensional, model. These conclusions can stated formally through the follow-
ing theorem. Again, details can be found in [3].

Theorem 10.2 (Stability)

(i) Suppose the trivial solution u = 0 of (10.6) is asymptotically stable (unstable);
then the trivial solution (x1, x2) = (0, 0) of (10.3) is alo asymptotically stable
(unstable).

(ii) Suppose the trivial solution u = 0 of (10.6) is stable. Then if (x1(t), x2(t)) is
a solution of (10.3) with (x1(0), x2(0)) sufficiently small, there is a solution of
u(t) of (10.6) such that as t → ∞

x1(t) = u(t) + O(e−γt )

x2(t) = h(u(t)) + O(e−γt ),

where γ > 0 is a constant.

10.1.2 Examples

Let us start with a simple two-dimensional problem.

Example 10.1
ẋ1 = x21 − x51
ẋ2 = −x2 + x21 .

(10.7)
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If we rewrite this system as

[
ẋ1
ẋ2

]
=
[
0 0
0 −1

] [
x1
x2

]
+
[
x21 x2 − x51

x21

]
.

We can then see that

A = 0, B = −1, f = x21 x2 − x5, g = x21 .

Thus, we can assume the center manifold to be of the form

x2 = h(x1) = ax21 + bx31 + O(x41).

We can then write

h(x1) = ax21 + bx31 + · · ·
Dh(x) = 2ax1 + 3bx21 + · · ·
Dh(x) [Ax1 + f (x1, h(x1))] = (2ax1 + 3bx21 + · · · )(ax41 + bx51 − x51 + · · · )
Bh(x1) + g(x1, h(x1)) = −(ax21 + bx31 + · · · ) + x21 .

Substituting into Eq. (10.5) and then collecting like powers of terms up to order
three, we get

O(x21 ) : a − 1 = 0
O(x31) : b = 0.

It follows that the center manifold is

x2 = h(x1) = x21 + O(x41 ).

Consequently, the flow on the center manifold is given by

ẋ1 = x41 + O(x51). (10.8)

Equation (10.8) shows that for small values, x1 ≈ 0, the zero equilibrium x1 = 0
is unstable, which implies that the zero equilibrium, (0, 0), of the original system,
is also unstable. Notice, however, that if we had considered that x2 appears to decay
exponentially fast, we could have assumed x2 ≈ 0, and obtained the approximation

ẋ1 = −x5,

which it would have, erroneously, indicated the opposite stability result of (0, 0)
being stable. This example highlights the importance of studying the dynamics and
stability properties via the center manifold reduction.
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We now illustrate the process of computing a center manifold through an example
in which a limit cycle solution lies on the invariant manifold while the solution
trajectories, transverse to the manifold, decay towards it. This is a similar situation
the illustration shown in Fig. 10.2.

Example 10.2 Consider the following nonlinear system of equations

ẋ1 = −x2 + x1(1 − x3)x3
ẋ2 = x1 + x2(1 − x3)x3
ẋ3 = −x3 + x21 + x22 + 2(1 − x3)x23 .

(10.9)

Figure 10.3 illustrates the long-term behavior of the model Eqs. (10.9). On the
left, the time-series solutions indicate that x3 remains constant at x3 = 1 while x1
and x2 oscillate periodically in a limit cycle trajectory. By inspection, we can see
that (0, 0, 0) is an equilibrium solution of (10.9). Then the plots suggest that this
equilibrium is unstable and the long-term dynamics appears to be captured by a
center manifold in which x3 remains constant while x1 and x2 oscillate in a limit
cycle solution.

To compute the center manifold, the right-hand side of Eq. (10.9) can be split first
between linear and nonlinear terms as follows

⎡
⎣ ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣0 −1 0
1 0 0
0 0 −1

⎤
⎦
⎡
⎣ x1
x2
x3

⎤
⎦+

⎡
⎣ x1(1 − x3)x3

x2(1 − x3)x3
x21 + x22 + 2(1 − x3)x23

⎤
⎦ .

We can then see that
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Fig. 10.3 Computer simulations of the dynamics of Eq. (10.7). (Left) Time Series solutions show
x3 remains constant while x1 and x2 oscillate periodically forming a limit cycle solution. (Right)
Phase space shows the long-term behavior of the dynamics in the form of a limit cycle
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A =
[
0 −1
1 0

]
, B = −1, f =

[
x1(1 − x3)x3
x2(1 − x3)x3

]
, and g = x21 + x22 + 2(1 − x3)x

2
3 .

Thus, we can assume the center manifold to be of the form

x3 = h(x1, x2) = ax21 + bx22 .

Substituting into Eq. (10.5) we get

[2ax1 | 2bx2]
{[

0 −1
1 0

] [
x1
x2

]
+
[
x1(1 − h(x1, x2))h(x1, x2)
x2(1 − h(x1, x2))h(x1, x2)

]}
+ h(x1, x2)−

x21 − x22 − 2(1 − h(x1, x2))h2(x1, x2) = 0.

Expanding this last equation and collecting like powers of terms up to order two,
i.e., x21 , x

2
2 and x1x2, we find:

O(x21 ) : a − 1 = 0
O(x1x2) : b − a = 0
O(x22 ) : b − 1 = 0.

It follows that a = b = 1, and the center manifold is

x3 = h(x1, x2) = x21 + x22 ,

which leads to the flow on the Center Manifold:
[
ẋ1
ẋ2

]
=
[
0 −1
1 0

] [
x1
x2

]
+
[
x1(1 − x21 − x22 )(x

2
1 + x22 )

x2(1 − x21 − x22 )(x
2
1 + x22 )

]
. (10.10)

In polar coordinates, x1 = r cos θ and x2 = r sin θ, Eq. (10.10) becomes

ṙ = r3(1 − r2)
θ̇ = 1.

(10.11)

We can see that r = 0 and r = 1 are equilibrium points of Eq. (10.11). The latter
represents the limit cycle solution observed in Fig. 10.3(right). A little calculation
(left as an exercise) can show that r = 0 is actually unstable, while the limit cycle
at r = 1, is stable. It follows from Theorem 10.1 that a limit cycle solution exists in
the original Eqs. (10.9) while Theorem 10.2 implies that the limit cycle in (10.9) is
also stable.

Example 10.3 (ParameterDependency:FluxgateMagnetometer.)Wenowconsider
the model of a N -dimensional (N odd for negative feddback) unidirectionally cou-
pled ring of overdamped bistable systems, which serves as a model for a fluxgate
magnetometer with N fluxgates:
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ẋi (t) = −xi (t) + tanh (c(xi (t) + λxi+1(t) + ε)) , (10.12)

where i = 1, . . . , N mod N . As a representative example, we consider the case
N = 3. Recall from Fig. 6.24 that a Hopf bifurcation occurs around λ = 4/3 from
the zero equilibrium (0, 0, 0), which leads to unstable periodic oscillations. Indeed,
around the trivial equilibrium, the linearized vector field yields the Jacobian matrix

J =
⎡
⎣ c − 1 c λ 0

0 c − 1 c λ
c λ 0 c − 1

⎤
⎦ ,

whose eigenvalues are

σ1 = c − 1 + cλ, σ2,3 = c − 1 − 1

2
cλ ± 1

2
cλ

√
3i.

At the critical value of coupling strength λc = 2(c − 1)/c, the eigenvalues are:

σ1 = 3(c − 1), σ2,3 = 0 ± (c − 1)
√
3i.

It follows that aHopf bifurcation occurs atλc. The bifurcation diagramof Fig. 6.24
was generated with c = 3, which corresponds to the critical value λc = 4/3 observed
in the figure. In fact, if we assume c > 1, so that the cores operate in the ferromagnetic
regime, we can see that the system (10.12) always has one negative eigenvalue,
σ1 < 0. The dynamics is then expected to converge to a two-dimensional manifold.
To compute the reduced dynamics, we perform first a Taylor series expansion of
Eq. (10.12) around the trivial equilibrium (x1, x2, x3) = (0, 0, 0), yielding

⎡
⎣ ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ c − 1 c λ 0

0 c − 1 c λ
c λ 0 c − 1

⎤
⎦
⎡
⎣ x1
x2
x3

⎤
⎦+

⎡
⎢⎢⎢⎢⎣

−1

3
x31 − λx21 x2 − λ2x1x

2
2 − 1

3
λ3x32

−1

3
x32 − λx22 x3 − λ2x2x

2
3 − 1

3
λ3x33

−1

3
x33 − λx23 x1 − λ2x3x

2
1 − 1

3
λ3x31

⎤
⎥⎥⎥⎥⎦ .

We now rewrite this last system of equations in the form given by Eq. (10.3). We
do this by exploiting the cyclic nature of the Jacobian matrix J , which leads to the
eigenvectors

Vj = {[v, ζ jv, ζ2 jv
] : v ∈ R

}
,

where j = 0, 1, 2 and ζ = e2πi/3. Let

P = [Re(V1) | Im(V2) |V0]
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be the transformation for the change of variables X = PY , where X = (x1, x2, x3)
and Y = (y1, y2, y3). Substituting into the ODE system in X we arrive at

⎡
⎣ ẏ1
ẏ2
ẏ3

⎤
⎦ =

⎡
⎣ μ (c − 1)

√
3 0

−(c − 1)
√
3 μ 0

0 0 3(c − 1)

⎤
⎦
⎡
⎣ y1
y2
y3

⎤
⎦+

⎡
⎣ f1(y1, y2)

f2(y2, y3)
f3(y3, y1)

⎤
⎦ ,

where μ = c − 1 − cλ is treated as a bifurcation parameter, which at λc becomes
zero, i.e., μ(λc) = 0. The vector function [ f1, f2, f3] contains cubic terms in yi and
y j , which can be written as: fi (yi , y j ) = aiiii y

3
i + aiii j y

2
i y j + aii j j yi y

2
j + aij j j y

3
j .

To compute the center manifold with the dependency on the bifurcation parameter
μ, the terms μy1 and μy2 are treated as nonlinear and the system of ODEs is extended
to

μ̇ = 0.

Then we set

A =
[

0 (c − 1)
√
3

−(c − 1)
√
3 0

]
, B = 3(c − 1), f =

[
f1(y1, y2)
f2(y2, y3)

]
, g = f3(y3, y1).

We now seek a Center Manifold of the form:

y3 = h(y1, y2,μ) = c1y
2
1 + c2μy1 + c3μy2 + c4y1y2 + c5y

2
2 + c6μ

2,

where ci ′s are unknown coefficients. Direct substitution into Eq. (10.5) and collecting
like powers of terms up to order two yields: c2 = c3 = c6 = 0, c1 = 3(c1), c4 =
4(c − 1)

√
3, and c5 = −3(c1), which yields

y3 = 3(c − 1)y21 + 4(c − 1)
√
3y1y2 − 3(c − 1)y22 .

The flow on the Center Manifold can be expressed as

[
ẏ1
ẏ2

]
=
[

μ (c − 1)
√
3

−(c − 1)
√
3 μ

] [
y1
y2

]
+
[

f1(y1, y2)
f2(y2, h(y1, y2))

]
. (10.13)

10.2 Lyapunov-Schmidt Reduction

Consider an n-dimensional mathematical model of the form

dX

dt
= Φ(X,α), (10.14)
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where X = (X1, . . . , Xn), Φ = (Φ1, . . . , Φn), and α = (α1, . . . αs) is a vector
of parameters. Assume Φ : Rn × R

s → R
n to be a smooth function satisfying

Φ(0, 0) = 0. Let

L = (dXΦ)(0,0) =
(

∂Φi

∂Xi
(0, 0)

)

be the associated Jacobian matrix. Observe that L : Rn → R
n . Now, if we are inter-

ested in computing the equilibrium points of Eq. (10.14), wemust solve the algebraic
equation

Φ(X,α) = 0, (10.15)

for the vector of unknowns X = (X1, . . . , Xn) as a function of the parameters, typ-
ically just the first parameter, i.e., α0 = λ, which is commonly treated as the distin-
guished bifurcation parameter. According to the Implicit Function Theorem (IFT),
see Sect. 5.2, if L is nonsingular, then there exists a unique solution X (λ) such that
Φ(X (λ),λ) = 0, X (0) = 0 and Φ(X) = LX + higher order terms.

If L is singular, however, the IFT theorem cannot be applied but the Lyapunov-
Schmidt (LS) Reduction shows that solving the high-dimensional Eq. (10.15) can be
reduced to that of solving a single equation. That is

Φ(X,α) = 0,
X ∈ R

n, α ∈ R
s .

⇐⇒ g(x,λ) = 0,
x ∈ R, λ ∈ R.

Next we show how the reduction is performed. We will follow the exposition
in [4], which is based on Euclidean spaces. But it should be emphasized that the
same procedure applies over Banach spaces.

Assume ker L �= {0}, i.e., rank L < n. This assumption is made because if
rank L = n then the Implicit Function theorem is applicable, there is no degeneracy
or bifurcation, so we can solve explicitly for a unique solution X (α). The minimum
degenerate case occurs when

rank L = n − 1.

This is the case to be considered in the remaining of the derivation. Then we seek
to find vector spaces M and N such that

R
n = ker L ⊕ M

R
n = range L ⊕ N .

(10.16)

Since rank L = n − 1, it follows that dim range L = n − 1 and dim ker L = 1.
Thismeans that dimM = n − 1 and dim N = 1.Next, we seek to solveΦ(X,α) = 0
by splitting X into ker L and M . That is, let X = v + w, and solve
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Φ(v + w,α) = 0, v ∈ ker L , w ∈ M.

Let E : Rn → range L . That is, E is the projection of Rn onto range L . Notice
that ker E = N , which means that Eu = 0 if and only if u = 0, for all u ∈ R

n . This
also means that the complimentary projection (I − E) : Rn → N has range equal
to N . Consequently, Φ = 0 if and only if

E Φ(X,α) = 0 (10.17a)

(I − E)Φ(X,α) = 0. (10.17b)

The fundamental idea behind the LS reduction is that Eq. (10.17a) can be solved
explicitly, for n − 1 variables, using the IFT Theorem. Then, those n − 1 variables
can be substituted into Eq. (10.17b) and solve for the remaining variable.

Claim E Φ(v + w,α) = 0 can be solved by the IFT theorem for w = W (v,α).

Proof Since E is linear, we can write

dW (E Φ)(0,0,0) = E(dW Φ)(0,0,0) = E(L|M) = (L|M)  onto range L ,

where L|M : M → range L is the restriction of L onto M . Thus, we can write

E Φ(v + W (v,α),α) = 0, W (0, 0) = 0.

In fact, all solutions to the equation E Φ(X,α) = 0 near the origin, X = 0, are
parametrized this way. �

Hence, all solutions to the original algebraic equation Φ(X,α) = 0, near X = 0
are parametrized by solutions to the equation

g(v,α) = (I − E)Φ(v + W (v,α),α) = 0,

where g : ker L × R
s → N . Recall that by assumption, rank L = n − 1 and

corank L = 1. Thus, we have reduced the original algebraic problem from R
n to

R
1. That is, g : R × R

s → R.

10.2.1 Computational Aspects

Let ker L = R{v}. Thus, we can view xv as coordinates on ker L . Likewise, let
N = R{v∗}. Choose v∗ ⊥ range L , where N = (range L)⊥. Assume also s = 1 and
α = λ. Let < ·, · > denote an inner product operation. Then the reduced model
g : ker L × R

s → N is given by
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g(x,λ) =< v∗, Φ(xv + W (x,λ),λ) > . (10.18)

The following calculations confirm that gx (0, 0) = 0, as is expected from the
bifurcation condition.

gx = 〈v∗,
dΦ

dx
(xv + W (x,λ),λ)〉 = 〈v∗, Φvv + (dWΦ)Wx 〉 = 〈v∗, Lv + LWx 〉 = 0.

The last equality holds since v∗ ∈ (range L)⊥ and LWx ∈ range L . Additional
derivative terms are computed as follows:

gλ(0, 0) = 〈v∗, Φλ(0, 0)〉
gxx (0, 0) = 〈v∗, (d2Φ)0(v, v)〉
gxλ = 〈v∗, d Φλ(v) − (d2Φ)0(v, z)〉
gxxx = 〈v∗, (d3Φ)0(v, v, v) − 3(d2Φ)0(v, z)〉,

where z = L−1E (d2Φ)0(v, v). The first derivative ofΦ can be computed as a “direc-
tional derivative”, i.e.,

(d Φ)(X,α)Y = d

dt
Φ(X + tY,α)|t=0.

Second-order derivatives can be computed as follows

(d2 Φ)(Y1,Y2) = d

dt2

d

dt1
Φ(X + tY1 + t2Y2,α)|t1=0,t2=0

=
n∑

i, j=1

∂2Φ

∂Xi∂X j
(X,α)Y i

1Y
j
2 ∈ R

n.

We can then re-write the derivatives of g as follows

gx (x,λ) = 〈v∗, (d Φ)(xv,W (v,λ),λ)(v + Wx )〉
gxx (x,λ) = 〈v∗, (d2 Φ)(v + Wx , v + Wx ) + (d Φ)(xv,W,λ)(Wxx )〉
gxx (0, 0) = 〈v∗, (d2 Φ)0(v + Wx (0), v + Wx (0)) + LWxx (0)〉

= 〈v∗, (d2 Φ)0(v + Wx (0), v + Wx (0))〉,

where the last equality follows from the fact that LWxx (0) ∈ range L , so LWxx (0)
= 0.

Claim Wx (0) = 0.

Proof Remember that W is defined implicitly by E Φ(xv + W (x,λ),λ)

= 0. Differentiating with respect to x we get

E L W (v + Wx ) = L Wx ,
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because v ∈ ker L implies Lv = 0. Then LWx (0) = 0 and since W (x,λ) ∈ M then
Wx ∈ M . It follows that since L|M : M → range L then Wx (0) = 0. �.

Similarly, since LWxxx (0) ∈ range L , so that LWxxx (0) = 0, we get

gxxx (0, 0) = 〈v∗, (d3Φ)0(v, v, v) + 3(d2Φ)0(Wxx (0), v) + LWxxx (0)〉
= 〈v∗, (d3Φ)0(v, v, v) + 3(d2Φ)0(Wxx (0), v)〉.

Next, we show how to find Wxx (0). We start once again with

E Φ(xv + W (x,λ),λ) = 0, and, E((d Φ)(v + Wx )) = 0.

Differentiating with respect to x we get

E[(d2Φ)(v + Wx , v + Wx ) + (d Φ)Wxx ] = E[(d2Φ)(v, v) + LWxx (0)] = 0.

Then, LWxx (0) = −E(d2Φ)(v, v), which yields

Wxx (0) = −L−1E(d2Φ)(0, 0).

An important feature of the LS reduction is that the stability properties of the
original model equations are preserved by the reduced model.

Theorem 10.3 (Exchange of Stability) If g(x,α) = 0, then the equilibrium
(xv0,W (x,α),α) to Eq. (10.14) is linearly stable if and only if gx (x,α) < 0.

Proof See Golubitsky [4].

We would like to emphasize that if X and Y are Banach spaces with a bounded
Fredholm operator L : X → Y , such that dim(ker L) < ∞ and rangeL is closed and
of finite codimension, the it is still possible to apply the Lyapunov-Schmidt reduction
by considering

X = ker L ⊕ M
Y = range L ⊕ N .

10.2.2 Symmetries

In this sectionwe show that if the originalmodel is symmetric under some transforma-
tion γ, then the reduced Lyapunov-Schmidt model will retain the same symmetries.

Suppose that γ : X → X and γ : Y → Y are linear (symmetry) mappings, such
that γ acts on the domain of the dirrential operator. That is, γ acts on �, and, conse-
quently, it acts on the space of functions. Thus,

Φ(γu,α) = γΦ(u,α), ∀(u,α).



10.2 Lyapunov-Schmidt Reduction 501

This means that Φ is γ-equivariant, i.e., γ is a symmetry of the original model.
Next we show that γ is also a symmetry of the reduced model.

Claim
g(γv,α) = γg(v,α).

Proof Let ŵ(v,α) = γ−1w(γv,α). We show that ŵ is an implicit function.

EΦ(v + ŵ(v,α),α) = EΦ(v + γ−1w(γv,α),α)

= EΦ(γ−1(γv + w(γv,α),α))

= E(γ−1Φ(γv + w(γv,α),α))

= γ−1EΦ(γv + w(γv,α),α)

= γ−10 = 0.

By uniqueness of the Implicit Function Theorem, we conclude ŵ = w. Thus,
γw(v,α) = w(γv,α). In addition, if Φ(γv,α) = γΦ(v,α) then

γΦ(γ−1u,α) = Φ(v,α).

This shows that Φ(γ−1v,α) = γ−1Φ(v,α). This result implies that if γ is a
symmetry of the model then so is its inverse. In coordinates this means that

γ(n, r) = (γn, γr),

where n ∈ N and r ∈ range L . In other words

Eγ = γE .

Finally, we can write

g(γv,α) = (I − E)Φ(γv + w(γv,α),α)

= (I − E)Φ(γv + γw(v,α),α)

= γg(v,α).

�

10.2.3 Examples

Example 10.4 (Euler’s Beam Model) We now consider Euler’s Beam experiment
whose original model appeared in Eq. (5.7). For completeness, we re-write themodel
here

Em Iθ
′′
(x) + λ sin θ(x) = 0, 0 < x < Lb, (10.19)
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where x is the material coordinate, Em is the elastic modulus, I is moment of inertia,
λ is the compressive force and Lb is the length of the beam. Notice that some of the
labels for parameters have been labeled in order to avoid confusion with the notation
used in the derivation of the LS reduction.

Assume Newmann (clamped) boundary conditions

θ′(0) = θ′(Lb) = 0. (10.20)

We start by decomposing the ambient space according to Eq. (10.16). That is, we
perform the following steps.

Step 1. Decompose Ambient Space
First, we define the space of two-times, real-valued, continuous and differentiable
functions from the interval [0, Lb] as the space for the solution θ(x). Formally, let

X = {θ ∈ C2([0, Lb];R) : θ(0) = θ(Lb) = 0
}
.

Next, we need to define Φ and compute L = (d Φ)(0,0). Let

Y = {θ ∈ C0([0, Lb];R)
}
.

We can now define Φ : X × R → Y through

Φ(θ(x),λ) = Em Iθ
′′
(x) + λ sin θ(x). (10.21)

Then the linearized boundary value problem yields

L θ(x) = Φθ(0,λ0)θ(x) = Em Iθ
′′
(x) + λ0θ(x).

Solving Φθ(0,λ0)θ(x) = 0, for θ, we get a nontrivial solution

θ(x) = An cos

(
nπx

Lb

)
,

if and only if

λ0 = n2π2Em I

Lb
,

where n is an integer. This result implies that in a neighborhood of (θ(x),λ) =
(0, n2π2E Im/L2

b), the boundary value problemEqs. (10.19) and (10.20), has only the
trivial solutionwhenλ < n2π2E Im/L2

b, and three solutionswhenλ > n2π2E Im/L2
b.

In both cases, the trivial solution corresponds to the unbuckled beam, while in the
latter case, the two nontrivial solutions correspond to the buckled states. This obser-
vation suggest that the beam problem undergoes a pitchfork bifurcation. We proceed
to verify this expectation as follows. Observe that
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dim ker L =
{

1 if λ0 = n2π2Em I/L2
b

0 otherwise.

Since we are interested in a nonzero kernel, we consider λ0 = n2π2Em I/L2
b, so

that

ker L =
{
θ ∈ X : θ(x) = An cos

{
nπx

Lb

}
, An ∈ R

}
.

We can now write
X = ker L ⊕ M
Y = range L ⊕ N ,

where the subspaces M and N can be computed using the standard inner product,
〈·, ·〉, which is defined by

〈u, v〉 =
∫ Lb

0
u(x) v(x)dx .

We can then use this definition of inner product to find the orthogonal complement
subspace M of ker L , and N of range L . Let ξ = nπx

Lb
, w ∈ M and φ ∈ N

M =
{
θ ∈ X : ∫ Lb

0 θ(ξ) cos ξdξ = 0
}

,

N = {φ ∈ Y : φ(ξ) = Bn cos ξ, Bn ∈ R} .

In fact, integrating by parts, we can verify that

〈cos ξ, L θ(ξ)〉 = ∫ Lb

0 cos(ξ)Lθ(ξ)dξ = ∫ Lb

0 cos(ξ)[Em Iθ
′′
(ξ) + λ0θ(ξ)]dξ

= Em I
∫ Lb

0 cos(ξ)θ
′′
(ξ)dξ + λ0

∫ Lb

0 θ(ξ) cos(ξ)dξ

= Em I cos(ξ)θ′(x)
∣∣Lb

0 − Em I
∫ Lb

0 sin(ξ)θ′(ξ)dξ

= Em I sin(ξ)θ(x)|Lb
0 − Em I

∫ Lb

0 cos(ξ)θ(ξ)dξ
= 0, ∀θ ∈ X.

This means that φ satisfies the linearized boundary value problem

Em Iφ
′′
(ξ) + λ0φ(ξ) = 0, φ′(0) = φ′(Lb) = 0.

Thus, we can see that in this case N = ker L and M = range L . Observe that
these results can also be derived from the fact that L is a self-adjoint linear operator.

Step 2. Split Algebraic Equations
We now proceed to transfer the decomposition of the ambient space X and Y into
the solution of two algebraic equations, as is shown in Eq. (10.22). We start with
Eq. (10.17a) as follows. Write φ(x) ∈ Y as
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φ(x) = (I − E)φ(x) + E φ(x), (10.22)

where (I − E)φ(x) ∈ ker L and E φ(x) ∈ range L . We know what ker L is, so we
can write

(I − E)φ(x) = An cos

{
nπx

Lb

}
.

Using the orthogonality properties of the sine function, we find

An = 2

Lb

∫ Lb

0
φ(s) cos

{
nπs

Lb

}
ds.

Substituting into Eq. (10.22) and solving for E φ(x), we find the projection of Y
onto range L to be

E φ(x) = φ(x) −
[
2

Lb

∫ Lb

0
φ(s) cos

{
nπs

Lb

}
ds

]
cos

{
nπx

Lb

}
.

Solving E φ(x) = 0 yields φ(x) = cos

{
nπs

Lb

}
.

Step 3. Write Reduced Model
Wemust now choose coordinates on ker L and N = (range L)⊥ to obtain the reduced
ordered model Eq. (10.18). Observe that the functions that make up both subspaces,
ker L and N , satisfy the same linearized boundary value problem. Thus, we can
choose the following coordinates:

v = v∗ = cos

{
nπx

Lb

}
.

Using Eq. (10.21), we compute the following Frétchet derivatives of Φ:

Φλ(θ,λ) = sin θ, (dΦλ)(v) = d

dt
sin (tv)

∣∣∣∣
t=0

= cos (tv)v|t=0 = v,

which leads to Φθλ(θ,λ) = cos θ. In addition,

d2Φ(−v1,−v2) = d

dt1

d

dt2
Φ(−t1v1 − t2v2,λ)

∣∣∣∣
t=0

= − d

dt1

d

dt2
Φ(t1v1 + t2v2,λ)

∣∣∣∣
t=0= −d2Φ(v1, v2).

By direct differentiation, we get
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d

dt1

d

dt2
Φ(−t1v1 − t2v2,λ)

∣∣∣∣
t=0

= (−1)2d2Φ(v1, v2) = d2Φ(v1, v2).

Thus, (d2Φ)(v1, v2) = 0, which implies that Φθθ = 0. Also

d3Φ(v1, v2, v3)
∣∣
θ=0 = d

dt1

d

dt2

d

dt3
Φ(t1v1 + t2v2 + t3v3,λ0)

∣∣∣∣
t=0

= d

dt1

d

dt2

d

dt3
(t1v

′′
1 + t2v

′′
2 + t3v

′′
3 + λ0 sin (t1v1 + t2v2 + t3v3))

= λ0
d

dt1

d

dt2
cos (t1v1 + t2v2)v3 = −λ0v1v2v3,

which implies that Φθθθ = −λ0. Evaluating all derivatives at (0,λ0) we get

Φλ = 0, Φθθ = 0, Φθλ = 1, Φθθθ = −λ0.

Then, direct computations yield

gλ = 〈v∗, Φλ(0, 0)〉 = 0
gxx = 〈v∗, (d2Φ)0(v, v)〉 = 0
gxλ = 〈v∗, (dΦλ)v − d2Φ(v, L−1EΦλ)〉 =

= 〈v∗, (dΦλ)v)〉 = 〈cos
{
nπx
Lb

}
, cos

{
nπx
Lb

}
〉 = Lb

2
,

gxxx = 〈v∗, (d3Φ)(v, v, v) − 3d2Φ(v, L−1Ed2Φ(v, v)〉 =
= 〈v∗, (d3Φ)(v, v, v)〉 = −〈cos

{
nπx
Lb

}
, cos3

{
nπx
Lb

}
〉 = −3

8
Lbλ0.

In summary, including the bifurcation problem, g = gx = 0, we have found:

g = gx = gλ = gxx = 0, gxλ = 1

2
Lb, gxxx = −3

8
Lbλ0.

The first set of four zero-equalities are known as the defining conditions for the
bifurcation problem. The last two nonzero-equalities are known as the degenerate
conditions [4]. The normal form consistent with these conditions is that of a pitchfork
bifurcation:

ẋ = g(x,λ) = λx − x3.

Example 10.5 (Traveling Wave Solutions of PDEModel) In this example, we study
the bifurcations of traveling wave solutions in a PDE model through the Lyapunov-
Schmidt reduction. The PDE model is reduced to an algebraic system of equations
whose solutions are in one-to-one correspondence with the traveling-wave solutions.
The PDE model is

∂2u

∂t2
+ ∂4u

∂x4
+ λ

∂2u

∂x2
+ u + u2

∂2u

∂x2
+ u

(
∂u

∂x

)2

= 0, (10.23)
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where u = u(x, t). Traveling wave solutions can be studied by employing a co-
rotating frame of reference. That is, let

ũ(y) = u(x, t), y = x − ct,

Substituting into Eq. (10.23) (and re-labeling ũ as u) we get

∂4u

∂y4
+ λ

∂2u

∂y2
+ u + u2

∂2u

∂y2
+ u

(
∂u

∂y

)2

= 0, (10.24)

with λ = 1 + c2. In this new frame of reference, u(y), is a periodic function of the
form u(y) = u(y + 2π).

Now, we define the space of four-times, real-valued, continuous and differentiable
functions from the interval [0, 2π] as the space for the solution u(y). Formally, let

X = {u ∈ C4([0, 2π];R) : u(0) = u(2π) = 0
}
.

Next, we need to define Φ and compute L = (d Φ)(0,0). Let

Y = {u ∈ C0([0, 2π];R)
}
.

We can now define Φ : X × R → Y through

Φ(u(y),λ) = ∂4u

∂y4
+ λ

∂2u

∂y2
+ u + u2

∂2u

∂y2
+ u

(
∂u

∂y

)2

. (10.25)

Then the linearized boundary value problem yields

L u(y) = Φu(0,λ0)u(y) = ∂4u

∂y4
+ λ

∂2u

∂y2
+ u.

Solving Φu(0,λ0)u(y) = 0, for u, we get

un(y) = An sin
(
ny
)+ Bn cos

(
ny
)
, n = 1, 2, . . .

The characteristic polynomial associated with this solution is

n4 − λn2 + 1 = 0,

which indicates that a bifurcation occurs at the value λ = 2. This, in turn, yields
n = 1. Thus, if we choose the modes

e1 = A sin y, e2 = B cos y,
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where A = B = √
2, then we can define

ker L = span {u1, u2} .

Observe that in this case dim kerL = 2. The Lyapunov-Schmidt reduction is still
applicable. We can now write

X = ker L ⊕ M
Y = range L ⊕ N ,

where the subspaces M and N can be computed using the standard inner product,
〈·, ·〉, which is defined by

〈u, v〉 = 1

2π

∫ 2π

0
u(x) v(x)dx .

We can then use this definition of inner product to find the orthogonal complement
subspace M of ker L , and N of range L . Let ξ = nπx

Lb
, w ∈ M and φ ∈ N

M =
{
u ∈ X : 1

2π

∫ 2π
0 u(y)

(
sin y + cos y

) = 0
}

,

N = {u ∈ Y : u = A sin y + B cos y, A, B ∈ R} .

In fact, integrating by parts, we can verify that 〈A sin y + B cos y, L u〉 = 0. We
leave this task as an exercise. The reduced equation can now be written as

g(x1, x2,λ) = (I − E)Φ(v + w,λ), (10.26)

where v ∈ ker L and w ∈ M . Letting u = v + w, we can rewrite Eq. (10.25) as

Φ(v + w,λ) = L(v + w) + (v + w)2(v + w)′′ + (v + w)((v + w)′)2
= Lv + v2v′′ + v(v′)2 + N (w),

where N (w) represents all the terms that containw. The projection onto ker L yields

g(x1, x2,λ) = (I − E)Φ(v + w,λ) =
2∑

i=1

〈Lv + v2v′′ + v(v′)2 + N (w), ei 〉ei .
(10.27)

Since v ∈ ker L , then we can write v = x1e1 + x2e2, where (x1, x2) are coordi-
nates of v in ker L . Substituting into Eq. (10.27), and after tedious computations of
inner products, which use the fact that Le1 = (1 − k2)e1 and Le2 = (1 − k2)e2, we
arrive at

[
ẋ1
ẋ2

]
= g(x1, x2,λ) =

[
(1 − c2)x1 − (x21 + x22 )x1
(1 − c2)x2 − (x21 + x22 )x2.

]
(10.28)
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The reduced model Eq. (10.27) has five equilibrium points:

X1 = (0, 0), X2,3 =
(
0,±

√
1 − c2

)
, X4,5 =

(
±
√
1 − c2, 0

)
.

It can be shown that the nontrivial equilibrium points correspond to the following
traveling wave solutions:

u2,3 = ±
√
2(1 − c2) cos(x − ct), u4,5 = ±

√
2(1 − c2) sin(x − ct)

10.3 Galerkin Projection

The Galerkin method is a convenient and straight-forward method to reduce a high-
dimensional model into a low-dimensional one. The former model is usually in the
form of an evolution equation or Partial Differential Equation (PDE), which serves
to describe a system or phenomenon that changes in space and time. The latter model
is usually in the form of a system of Ordinary Differential Equations (ODE), which
describes only the temporal evolution of the space-time dynamics. To start, let’s
consider first the evolution model

∂u(x, t)
∂t

= F(u), (10.29)

in which F is, in general, a nonlinear function that involves spatial derivatives. But
since the method is rather general, F may also include integrals. Now, let’s assume
that the scalar functions u(x, t) have already been decomposed via the POD into
Eq. (8.45). For completeness, we rewrite the decomposition

u(x, t) =
∞∑
k=1

ak(t)Φk(x) , (10.30)

Computing the derivative of u(x, t) with respect to t yields

∂u(x, t)
∂t

=
∞∑
k=1

dak(t)

dt
Φk(x). (10.31)

We rewrite Eq. (10.29) in the following form

∂u(x, t)
∂t

− F(u) = 0.
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Then we can project the PDE onto each i th POD mode by computing the inner
product (·, ·). That is, (

∂u(x, t)
∂t

− F(u), Φi

)
= 0. (10.32)

Substituting Eq. (10.31) into Eq. (10.32) we get

(
dak(t)

dt
Φk(x) − F(u), Φi

)
=

N∑
k=1

dak(t)

dt
(Φk(x),Φi (x)) − (F(u),Φi (x)) = 0.

Since the POD modes Φi ′s are orthogonal (actually we can assume they are
orthonormal), the only nonvanishing terms in the summation above are those where
k = i . Thus, we get

dai (t)

dt
=
(
F

(
N∑

k=1

ak(t)Φk(x)

)
, Φi (x)

)
, i = 1, . . . , N . (10.33)

Equation (10.33) is the desired reduced-order model of our original evolution
equation. It is low-dimensional because it contains only one independent variable,
time t . Since the PODmodes Φ j ′s do not change over time, the reduced-order model
can be thought as the time-evolution of the amplitudes ak(t) in the POD decompo-
sition, Eq. (8.45), of the scalar field u(x, t).

Example 10.6 (Heat Transfer Model) A one-dimensional model for heat transfer
along a rod of length l = 1 is given by

∂u

∂t
= −ν

∂u

∂x
+ 1

Pe

∂2u

∂x2
, (10.34)

with initial and boundary conditions

u(x, 0) = u0(x),
∂u

∂x
u(0, t) = ∂u

∂x
u(1, t).

In Eq. (10.34), the parameter Pe represents the Peclet number. Let us assume that
we have already POD decomposed u(x, t) as is shown in Eq. (10.30). Then direct
substitution into Eq. (10.33) leads to
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dai
dt

=
(

−ν

n∑
k=1

ak
∂Φk

∂x
+ 1

Pe

n∑
k=1

ak
∂2Φk

∂x2
, Φi

)

=
n∑

k=1

[
−ν

(
∂Φk

∂x
, Φi

)
+ 1

Pe

(
∂2Φk

∂x2
, Φi

)]
ak .

If we let X = [a1, a2, . . . , an]T , then we can write the reduced order model in
matrix notation

dX

dt
= AX, X (0) = X0, (10.35)

where

Ai j = −ν

(
∂Φ j

∂x
, Φi

)
+ 1

Pe

(
∂2Φ j

∂x2
, Φi

)
, X0i = (u0, Φi ) , i = 1, . . . , N .

Example 10.7 (Flame Dynamics.) Consider the spatio-temporal model of flame
instability described by the Kuramoto-Sivashinsky Eq. (8.33). For completeness pur-
poses, we show the model equation again

∂u

∂t
= η1u − (1 + ∇2)2u − η2(∇u)2 − η3u

3. (10.36)

Let’s assume there is no noise, i.e., ξ(x, t) = 0. Assume also that the POD decom-
position of the scalar field u(x, t) has been performed, so that the spatial modesΨk in
Eq. (10.30) are readily available. Now we seek to find a low-dimensional model for
the evolution of the corresponding amplitude coefficients ak(t). Then we can rewrite
the right-hand side of Eq. (10.36) in terms of the POD expansion as follows

F(u) = (η1 − 1)
∑
k=1

akΦk − 2
∑
k=1

ak∇2Φk −
∑
k=1

ak∇4Φk−

η2

(∑
k=1

ak ∇Φk

)2

− η3

(∑
k=1

ak Φk

)3

.

Computing the inner product of F(u) with each individual kth POD mode we get

(F(u),Φi ) = (η1 − 1)
∑
k=1

ak (Φk , Φi ) − 2
∑
k=1

ak
(
∇2Φk , Φi

)
−
∑
k=1

ak
(
∇4Φk , Φi

)
−

η2

⎛
⎜⎝
⎛
⎝∑
k=1

ak ∇Φk

⎞
⎠
2

, Φi

⎞
⎟⎠− η3

⎛
⎜⎝
⎛
⎝∑
k=1

ak Φk

⎞
⎠
3

, Φi

⎞
⎟⎠ .

Simplifying, we arrive at the reduced order model



10.3 Galerkin Projection 511

dai
dt

= (η1 − 1)ai − 2
∑
k=1

(∇2Φk, Φi
)
ai −

∑
k=1

(∇4Φk, Φi
)
ai−

η2

⎛
⎝
(∑

k=1

ak ∇Φk

)2

, Φi

⎞
⎠− η3

⎛
⎝
(∑

k=1

ak Φk

)3

, Φi

⎞
⎠ .

(10.37)

For the special case of a 1D domain, i.e., 0 < x < l, the following POD modes
can be used as a basis

ΦN
k=1 =

{√
2 cos (kx),

√
2 cos (kx), k = 1, . . . , kmax

}

with an inner product

(u(x) v(x)) = 1

2π

∫ 2π

0
u(x) v(x)dx .

Observe that truncating at wave number kmax leads to N = 2kmax POD modes.
Using the fact that ∇2Φk = −k2Φk and ∇4Φk = Φk , direct calculations of inner
products, yield the following coefficients for linear terms:

(∇2Φ1 , Φ1
) = −k2,

(∇2Φ2 , Φ1
) = 0,

(∇2Φ1 , Φ2
) = 0,

(∇2Φ2 , Φ2
) = −k2,(∇4Φ1 , Φ1

) = k4,
(∇4Φ2 , Φ1

) = 0,
(∇4Φ2 , Φ2

) = k4,
(∇4Φ1 , Φ2

) = 0.

For the coefficients of the quadratic terms, we get

(
(∇Φ1)

2 , Φ1
) = 0, (∇Φ1∇Φ2 , Φ1) = 0,

(
(∇Φ2)

2 , Φ1
) = 0,(

(∇Φ1)
2 , Φ2

) = 0, (∇Φ1∇Φ2 , Φ2) = 0,
(
(∇Φ2)

2 , Φ2
) = 0,

Thus, all quadratic terms vanish. For the special case of k = 1, the coefficients of
the cubic terms lead to

(
Φ3

1 , Φ1
) = 3π

2
,
(
Φ2

1Φ2 , Φ1
) = 0,

(
Φ1Φ

2
2 , Φ1

) = π

2
,
(
Φ3

2 , Φ1
) = 0,

(
Φ3

1 , Φ2
) = 0,

(
Φ2

1Φ2 , Φ2
) = π

2
,
(
Φ1Φ

2
2 , Φ2

) = 0,
(
Φ3

2 , Φ2
) = 3π

2
.

Substituting into Eq. (10.38) we arrive at the desired reduced order model

ȧ1 = η1a1 − 3π

2
η3a1

(
a21 + a22

)
ȧ2 = η1a2 − 3π

2
η3a2

(
a21 + a22

)
.

(10.38)

Similar calculations apply for higher-order modes. They are left as an exercise.
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10.4 Normal Forms

In this section we focus our attention on the process of simplifying a mathematical
model. There are two types of simplifications that can be performed on a givenmodel.
One deals with simplifying the number of parameters to a minimum. This type of
simplification can be achieved by the process of writing the relevant equations in
dimensionless form, and it was already discussed earlier on Chap. 2. The second
type of simplification deals with eliminating terms that are negligible or that do not
influence the dynamics nor the type of bifurcation that occurs in the model.

10.4.1 Hopf Bifurcation

To illustrate the process, we consider the case of a Hopf bifurcation near a zero
equilibrium [5] point x = 0, where x = (x1, x2)T . Assume the model is written as

dx

dt
= L(λ)x + N (x,λ), (10.39)

where L is the linear part, i.e., a constant 2 × 2matrix that depends on the bifurcation
parameter λ, of the form

L(λ) =
[
l11(λ) l12(λ)

l21(λ) l22(λ)

]
.

N (x,λ) is a smooth vector-valued function that contains nonlinear terms. Near
x = 0 the matrix L(λ) represents the Jacobian matrix whose eigenvalues, σ1,2, are
the roots of the characteristic polynomial

σ2 − Tr(L)σ + det(L) = 0,

where Tr(L)(λ) = l11(λ) + l22(λ) and det(L)(λ) = l11(λ)l22(λ) − l12(λ)l21(λ).

Direct computation yields

σ1,2 = 1

2
Tr(L) ± 1

2

√
Tr2(L) − 4det(L).

Recall from Chap. 5 that the condition for a Hopf bifurcation requires

Tr(L)(0) = 0, and det(L)(0) > 0.

Thus, if we set det(L)(0) = ω2
0 > 0 and define
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τ (λ) = 1

2
Tr(L)(λ), ω(λ) = 1

2

√
4det(L) − Tr2(L),

then we can assume the eigenvalues of L to be of the form

σ(λ) = τ (λ) ± ω(λ)i, τ (0) = 0, ω(0) = ω0 > 0.

Claim The matrix L(λ) in the model Eq. (10.39) has the canonical real Jordan form

J (λ) =
[

τ (λ) −ω(λ)

ω(λ) τ (λ)

]
. (10.40)

Proof Let q = v1 ∓ v2i be the eigenvectors associated with the eigenvalues σ(λ),
and let

P = [v1| v2]

be the matrix whose columns are the real and imaginary parts (vectors) of q. It is
known [5] that v1 and v2 are linearly independent, then it follows that P is invertible
and

Pe1 = v1, Pe2 = v2, and P−1v1 = e1, P−1v2 = e2.

Since q is an eigenvector of the matrix L then

L(λ)q(λ) = σ(λ)q(λ).

Consider σ(λ) = τ (λ) − ω(λ)i , for which q(λ) = v1 + v2i . Then direct compu-
tations show

L(v1 + v2i) = (τ − ωi)(v1 + v2i) = τv1 + ωv2 + (τv2 − ωv1)i,

so that Lv1 = τv1 + ωv2 and Lv2 = τv2 − ωv1. These results lead to

P−1LPe1 = P−1Lv1 = τ P−1v1 + ωP−1v2 = τe1 + ωe2,
P−1LPe2 = P−1Lv2 = τ P−1v2 − ωP−1v1 = −ωe1 + τe2.

Observe that P−1LPe1 and P−1LPe2 are the first and second column of P−1LP ,
respectively. Consequently, the matrix P−1LP takes the form

J (λ) = P−1LP =
[

τ (λ) −ω(λ)

ω(λ) τ (λ)

]
.

�
Let y = Px , where y = (y1, y2). Substituting into Eq. (10.39) leads to

dy

dt
= J (λ)y + Ñ (y,λ), (10.41)
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where Ñ = P−1PN (Py,λ). Next, we complexify by introducing z = y1 + y2i , so
that Eq. (10.41) can be rewritten as

dz

dt
= σ(λ)z + g(z, z̄,λ), (10.42)

where g = O(|z|2) is a smooth function of (z, z̄,λ).

The process of reducing Eq. (10.42) (or any other model equation for that matter)
into normal form consists of eliminating, as much as possible, nonlinear terms,
through successive near identity transformations of the form

z = w + h(w, w̄), where h = O(|w|2). (10.43)

Quadratic Terms
We start with quadratic terms, and rewrite Eq. (10.42) as a Taylor series up to order
two in z and z̄, through

dz

dt
= σ(λ)z + g20

2
z2 + g11zz̄ + g02

2
z̄2 + O(|z|3), (10.44)

where σ = σ(λ) = τ (λ) ± ω(λ)i , τ (0) = 0, ω(0) = ω0 > 0, and gi j = gi j (λ). We
write the near-identity transformation (10.43) as a Taylor series up to order two:

z = w + h20
2

w2 + h11ww̄ + h02
2

w̄2 + O(|w|3). (10.45)

The inverse transformation can also be written as a Taylor series of the form

w = z − h20
2

z2 − h11zz̄ − h02
2

z̄2 + O(|z|3).

Then, direct computations yield

ẇ = ż − h20zż − h11(ż z̄ + z ˙̄z) − h02 z̄ ˙̄z + · · ·
= σz +

(g20

2
− σh20

)
+ (g11 − σh11 − σ̄h11zz̄ +

(g02

2
− σ̄h02

)
+ · · ·

= σw + 1

2
(g20 − σh20)w

2 + (g11 − σ̄h11)ww̄+
1
2 (g02 − (2σ̄ − σ)h02)w̄2 + O(|w|3).

It follows that all quadratic terms can be eliminated by setting

h20 = g20

σ
, h11 = g11

σ̄
, h02 = g02

2σ̄ − σ
.
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Cubic Terms
We can now rewrite Eq. (10.42) as a Taylor series up to order three

dz

dt
= σ(λ)z + g30

6
z3 + g21

2
z2 z̄ + g12

2
zz̄2 + g03

6
z̄3 + O(|z|4). (10.46)

We write the near-identity transformation (10.43) as a Taylor series up to order
three:

z = w + h30
6

w3 + h21
2

w2w̄ + h12
2

ww̄2 + h03
6

w̄3 + O(|w|4). (10.47)

The inverse transformation can also be written as a Taylor series of the form

w = z − h30
6

z3 − h21
2

z2 z̄ − h12
2

zz̄2 − h03
6

z̄3 + O(|z|4).

Then, direct computations yield

ẇ = ż − h30
2

z2 ż − h21
2

(2zz̄ż + z2 ˙̄z) − h12
2

(ż z̄2 + 2zz̄ ˙̄z) − h03
2

z̄2 ˙̄z + · · ·
= σz +

(
g30

6
− σh30

2

)
z3 +

(
g21

2
− σh21 − σ̄h21

2

)
z2 z̄+(

g12

2
− σh12 − σ̄h12

2

)
zz̄2 +

(
g03

6
− σ̄h03

2

)
z̄3 + · · ·

= σw + 1

6
(g30 − 2σh30)w

3 + 1

2
(g21 − (σ + σ̄)h21)w

2w̄+
1

2
(g12 − 2σ̄h12)ww̄2 + 1

6
(g03 + (σ − 3σ̄)σh03)w̄

3 + O(|w|4).

It follows that all cubic terms, except for the term containing w2w̄, can be elimi-
nated by setting

h30 = g30

2σ
, h12 = g12

2σ̄
, h03 = g03

3σ̄ − σ
.

The reason why the term w2w̄ cannot be eliminated is because it would require
setting

h21 = g21

σ + σ̄
,

which might be possible for small λ �= 0 but not for λ = 0, at which point the
denominator, σ + σ̄, vanishes.

Consequently, the normal form equations for the Hopf bifurcation can be written,
up to order three, as

ẇ = σ(λ)w + c1w
2w̄ + O(|w|4). (10.48)
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We can rewrite this last equation in the more familiar normal form for a Hopf
bifurcation

ż = (σ(λ) + c1|z|2
)
z (10.49)

Stability
The stability of emerging oscillations is determined by the coefficient c1, which can
be computed as follows. Differentiate the near identity transformation Eq. (10.45) to
get

ż = ẇ + h20wẇ + h11(w ˙̄w + w̄ẇ) + h02w̄ ˙̄w.

Substituting Eq. (10.48), and the conjugate version for ẇ, into this last expression
we get (up to order three) the following expression

ż = σw + h20σw2 + h11(σ + σ̄)ww̄ + h02σ̄w̄2. (10.50)

Now, we consider the original equation, which can be written as a Taylor series
in z and z̄ as

ż = σz +
∑

2≤ j+k≤3

1

j !k!g jk z
j z̄k + O(|z|4). (10.51)

Substituting Eq. (10.45) into Eq. (10.51) and expanding up to order three, we get

ż = σw + 1
2 (h20σ + g20)w2 + 1

2 (h02σ + g02)w̄
2 + (h11σ + g11)ww̄+

1
6 (3g11h̄02 + 3g20h20 + g30)w

3 + 1
6 (3g02h̄20 + 3g11h02 + g03)w̄

3+
1
2 (2g02h̄11 + 2g11h11 + g11h̄20 + g20h02 + g12)ww̄2+
1
2 (g02h̄02 + g11h20 + 2g11h̄11 + 2g20h11 + g21)w

2w̄.

(10.52)

Comparing the coefficients of the quadratic terms of Eq. (10.50) with those of
Eq. (10.52) yields (as expected) the previously found formulas for h20, h11, and h02.
Similarly, the coefficient in front of the term w2w̄ corresponds to c1:

c1 = 1

2
(g02h̄02 + g11h20 + 2g11h̄11 + 2g20h11 + g21).

Substituting the formulas for h20, h11, and h02 yields the stability condition in
terms of the Taylor coefficients gi j , as

c1 = g20g11(2σ + σ̄)

2|σ|2 + |g11|2
σ̄

+ |g02|2
2(2σ − σ̄)

+ 1

2
g21. (10.53)

At the bifurcation point λ = 0, the formula for the coefficient c1 reduces to
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c1(0) = i

2w2
0

(
g20g11 − 2|g11|2 − 1

3
|g02|2

)
+ g21

2
. (10.54)

10.4.2 General Method

Let us now formalize the process of simplifying a model into its normal form. Con-
sider a generic version of a mathematical model written as

ẋ = f (x), x ∈ R
n, f (0) = 0. (10.55)

Consider the change of coordinates

x = ϕ(y), ϕ(0) = 0,

and assume (dϕ)0 is invertible. By the chain rule ẋ = (dϕ)y ẏ = f (ϕ(y)), so that
the original model Eq. (10.55) can be rewritten in the new coordinates y as

ẏ = g(y) = (dϕ)−1
y f (ϕ(y)). (10.56)

The general idea of writing a model in normal form is to make Eq. (10.56) as easy
to deal with as possible. To do that, let

ẋ = L x + f2(x) + · · ·+ fk−1(x) + h(x), (10.57)

where L (x) represents the linear terms, while each function fk(x) represents terms
of order k. To make Eq. (10.56) as easy as possible, we need to find changes of
coordinates that will leave the terms through order k − 1 fixed and simplify terms
at order k. This process can be accomplished by using near identity changes of
coordinates

ϕ(y) = y + ϕk(y),

whereϕk is a homogeneous polynomial of degree k, and (dϕk)0 = In , which implies
invertibility:

(dϕ)y = I + (dϕk)y ⇐⇒ (dϕ)−1
y = I − (dϕk)y + · · · + O(|y|k).

The invertibility equations can be verified directly by computing:

(
I + (dϕk)y

) (
I − (dϕk)y

) = I + (dϕk)y − (dϕk)y + (dϕk)
2
y = O(|y|k).

Substituting (dϕ)−1
y = I − (dϕk)y into Eq. (10.56) we obtain,
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ẏ = [I − (dϕk)y
] [

L(y + ϕk(y)) + f2(y + ϕk(y)) + · · · + fk−1(y + ϕk(y))+
h(y + ϕk(y))] .

Modulo terms of order k + 1, represented by Mk+1, we get

fi (y + ϕk(y)) = fi (y) + Mk+1, i = 1, . . . , k − 1.

Then,

ẏ = [
I − (dϕk)y

] [
L y + f2(y) + · · · + fk−1(y) + h(y) + Lϕk(y)

]
,

ẏ = L y + f2(y) + · · · + fk−1(y) + h(y) + Lϕk(y) − (dϕk)y Ly.

Now, let us introduce the following adjoint map.

Definition 10.2 (Adjoint Map) The adjoint map, adL : pk → pk , defined by

adL(p(y)) = Lp(y) − (dp)y L y,

is linear in p.

We have them arrived at the following theorem.

Theorem 10.4 Using successive near identity changes of coordinates, throughorder
k, we can assume that a general mathematical model

ẋ = L x + f2(x) + · · · + fk−1(x) + · · · ,

can be written in the form

ẏ = L y + g2(y) + · · · + gk(y) + · · · ,

where g j (y) ∈ J j and p j = Im adL ⊕ J j .

The main idea is that all terms in Im adL can be discarded, while the terms in J j

are the ones that make up the normal form. Let us now revisit the case of a Hopf
bifurcation.

Example 10.8 (Hopf Bifurcation Revisited) Our previous discussion has shown that
all that is needed to apply the generalmethodology of rewriting amathematicalmodel
in normal form is the linear part of the model. Thus, for this example assume

L =
[
0 −1
1 0

]
.

Since the eigenvalues are ±i , it is reasonable to expect a Hopf bifurcation. Next,
let

p(x) = (p1(x1, x2), p2(x1, x2)),
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and proceed to compute

adL p = Lp(x) − (dp)x L x .

Direct computations show

L p = (−p2, p1), (dp) =
[
p1,x1 p1,x2
p2,x1 p2,x2

]
.

Then

adL p =
[ −p2 + p1,x1x2 − p1,x2x1

p1 + p2,x1x2 − p2,x2x1

]
. (10.58)

Quadratic Terms
We now seek to find out which quadratic terms can be eliminated. Thus, let

p1 = a11x21 + a12x1x2 + a22x22
p2 = b11x21 + b12x1x2 + b22x22 .

Substituting into Eq. (10.58) we get

adL p =
[ −(a12 + b11)x21 + (2a11 − 2a22 − b12)x1x2 + (a12 − b22)x22

(a11 − b12)x21 + (a12 + 2b11 − 2b22)x1x2 + (a22 + b12)x22

]
.

In coordinates, [a11, a12, a22, b11, b12, b22], we can write

adL

⎡
⎢⎢⎢⎢⎢⎢⎣

a11
a12
a22
b11
b12
b22

⎤
⎥⎥⎥⎥⎥⎥⎦

= T

⎡
⎢⎢⎢⎢⎢⎢⎣

a11
a12
a22
b11
b12
b22

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 2 0 1 0 0
−1 0 1 0 1 0
0 −2 0 0 0 1

−1 0 0 0 2 0
0 −1 0 −1 0 1
0 0 −1 0 −2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

a11
a12
a22
b11
b12
b22

⎤
⎥⎥⎥⎥⎥⎥⎦

Direct computations show that rank T = 6. This means that T is nonsingular, so
T is invertible, so that

Im adL|P2
= P2.

Consequently, the complement space is J2 = {0}. It follows that all quadratic
terms can be eliminated through successive near-identity transformations.

Cubic Terms
We now seek to find out which cubic terms can be eliminated. Thus, let

p1 = a111x31 + a112x21 x2 + a122x1x22 + a222x32
p2 = b111x31 + b112x21 x2 + b122x1x22 + b222x32 .
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Direct computations lead to the matrix representation for adL, which we write as
follows:

adL

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a111
a112
a122
a222
b111
b112
b122
b222

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a111
a112
a122
a222
b111
b112
b122
b222

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 3 0 0 1 0 0 0
−1 0 2 0 0 1 0 0
0 −2 0 1 0 0 1 0
0 0 −3 0 0 0 0 1

−1 0 0 0 0 3 0 0
0 −1 0 0 −1 0 2 0
0 0 −1 0 0 −2 0 1
0 0 0 −1 0 0 −3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a111
a112
a122
a222
b111
b112
b122
b222

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This time we find rank T = 6. This implies that adL(p) has a complement space
which is two-dimensional. To find this complement, we could try to find two vectors,
with eight components each, that are linearly independent and orthogonal to each
column of the matrix T . But this is the same as computing two linearly independent
left-eigenvectors of the zero eigenvalue. That is, we need to compute v such that
vT T = 0. Direct computations yield

v1 = [1 0 1 0 0 1 0 1]T
v2 = [0 − 1 0 − 1 1 0 1 0]T .

Interpreting the components of these eigenvectors as the coordinates of cubic
terms, we find the complement space J2 to be of the form

[
x31 + x1x22
x21 x2 + x32

]
,

[−x21 x2 − x32
x31 + x1x22

]
.

We can then write the complement space as

J2 =
{
p(x21 + x22 )

[
x1
x2

]
+ q(x21 + x22 )

[−x2
x1

]}
. (10.59)

In fact, the previous result can be generalized to include higher order terms, which
lead to all even terms being eliminated from the normal form, while the odd terms
can be written as

P2k+1 = adL(P2k+1) ⊕
{
(x21 + x22 )

k

[
x1
x2

]
+ (x21 + x22 )

k

[−x2
x1

]}
.

Consequently, by near identity changes of coordinates, we can assume the normal
form of a Hopf bifurcation to be

d

dt

[
x1
x2

]
=
[
0 −1
1 0

] [
x1
x2

]
+

k∑
j=1

{
a j (x

2
1 + x22 )

j

[
x1
x2

]
+ b j (x

2
1 + x22 )

j

[−x2
x1

]}

+O(|x |2k+2).
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10.5 Exercises

Exercise 10.1 Consider the planar system

ẋ = xy + x3

ẏ = −y − 2x2.

Compute the Center Manifold near the (0, 0) equilibrium and determine its sta-
bility.

Exercise 10.2 Study the dynamics near the origin via the center manifold for each
of the following systems:

(a)
ẋ1 = −x1 + x22
ẋ2 = − sin x .

(b)

ẋ1 = 1

2
x1 + x2 + x21 x2

ẋ2 = x1 + 2x2 + x22 .

(c)
ẋ1 = −x1 − x2 + x23
ẋ2 = 2x1 + x2 − x23
ẋ3 = x1 + 2x2 − x3.

Exercise 10.3 Consider the following 3D system

ẋ = y
ẏ = −x − xz
ż = −z + αx2.

Compute the Center Manifold near the (0, 0, 0) equilibrium and determine its
stability.

Exercise 10.4 Show that (cos t, sin t, 1) is a solution of Eq. (10.7).

Exercise 10.5 Show that the zero equilibrium solution of Eq. (10.11) is unstable.

Exercise 10.6 Consider the planar system

u̇ = v

v̇ = βu − u2 − δv.

Compute the Center Manifold near the (0, 0) equilibrium and determine its sta-
bility.
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Exercise 10.7 Consider the following 3D model of a laser system

ẋ = g2

γ + κ
[λ(x + y) − N (x + y)z]

ẏ = −(γ + κ)y − g2

γ + κ
(x + y)(λ + z)

ż = −r z + 2

N

[
(κx − γy)(x∗ + y∗)

]
,

where g, γ, κ, λ and r are all parameters. x∗ and y∗ are mode amplitudes. Compute a
center manifold of the form y, z = f (x2,λx,λ2) near the (0, 0, 0) equilibrium and
determine its stability.

Exercise 10.8 The singular perturbation problem

ẏ = −y + (y + c)z
ε̇ż = y − (y + 1)z,

(10.60)

where ε > 0 and small, and 0 < c < 1. For ε = 0 a solution is given by:

z = y

y + 1
.

Substitution of this solution into ẏ gives

ẏ = (c − 1)

(1 + y
y. (10.61)

Show via center manifold reduction that solutions of (10.60) are close to solutions
of (10.61).

Exercise 10.9 Consider the Lorenz equations

ẋ = σ(y − x)
ẏ = ρ̃x + x − y − xz
ẏ = −βz + xy.

(10.62)

Here ρ̃ = ρ − 1 is the usual parameter in the Lorenz system. Assume σ and β to
be fixed.

(a) Compute the equilibrium points of Eq. (10.62).
(b) Calculate the linearization of Eq. (10.62) near the zero equilibrium (0, 0, 0).
(c) Compute the eigenvalues and eigenvectors of the Jacobian matrix associated

with the linearization of Eq. (10.62).
(d) Find a transformation matrix T that allows to rewrite the model equation in the

form given by Eq. (10.3).
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(e) Consider ρ̃ as the distinguished bifurcation parameter. Study the stability of the
zero equilibrium using the center manifold. Describe the nature of the bifurca-
tions near the trivial equilibrium.

Exercise 10.10 Consider the following system of differential equations

ẋ = λ2 + x − x2 + y2

ẏ = λ + x2 − xy.
(10.63)

Equilibrium points of the system (10.63) can be though of as being zeros of the
function Φ : R2 × R → R

2 given by

Φ(x, y,λ) = (λ2 + x − x2 + y2,λ + x2 − xy).

Apply the Lyapunov-Schmidt procedure to reduce the problem of solving Φ(x,
y,λ) = 0 into solving an equivalent equation of the form g(x,λ) = 0.

Exercise 10.11 Repeat the Lyapunov-Schmidtmodel reduction on the Euler’s Beam
model Eq. (10.19) but this time with hinged contact boundary conditions:

θ(0) = θ(Lb) = 0.

Hint: this time ker L is spanned by eigenfunctions of the form: sin

{
nπx

Lb

}
.

Exercise 10.12 Consider the PDE model Eq. (10.23) with traveling wave solutions.
Carry out the computations outlined in Eq. (10.28) to show that the PDE model
reduces to the algebraic system of Eq. (10.28).

Exercise 10.13 A model for a dispersive long wave has the form

uty + vxx + 1

2
(u2)xy = 0

vt + (uv + u + uxy)x = 0,
(10.64)

where u = u(x, y, t) and v = v(x, y, t). In this exercise, you will study the bifurca-
tion of traveling wave solutions to Eq. (10.64) through the following tasks.

(a) Apply the transformation

u(η) = u(x, y, t), v(η) = v(x, y, t), η = px + qy − ct, pq �= 0,

to rewrite the original model Eq. (10.64) as

−qcu′′ + p2v′′ + pq(uu′′ + (u′)2) = 0
−cv′ + p(uv + u + pqu′′)′ = 0,
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where (′= d/dη). Solve the second equation for v′ and substitute into the first
one, to arrive (after letting u = v) to the following version of the original model

αu′′′′ + βu′′ + μ(uu′′ + (u′)2) = 0, (10.65)

where α = p4q, β = p3 − c2q, μ = 2p3 + pq, also

u(η) = u(η + 2π), v(η) = v(η + 2π).

(b) Apply the Lyapunov-Schmidt reduction to study the bifurcations of Eq. (10.65).

Exercise 10.14 Consider a reaction-diffusion model of the form

ut = Duxx − f (u), 0 ≤ x ≤ l, t ≥ 0, (10.66)

with Dirichlet boundary conditions u(0, t) = u(l, t), which represent the fact that
concentrations are fixed.

(a) Let v(η, t) = u(lη, t), with 0 ≤ η ≤ 1. Rewrite the original model Eq. (10.66)
as

vt = D

l
vηη − f (v), (10.67)

with boundary conditions v(0, t) = v(1, t) = 0.
(b) Apply the Lyapunov-Schmidt reduction on Eq. (10.67) and study the effect of

varying the length l. What kind of bifurcation effects should you expect from
the reduced model?

Exercise 10.15 Consider the Brusselator model

dX

dt
= D1Xξξ + X2Y − (B + 1)X + A

dY

dt
= D2Yξξ − X2Y + BX,

(10.68)

where 0 ≤ ξ ≤ l, and boundary conditions: X (0, t) = X (l, t) = 0, Y (0, t) = Y (l, t)
= B/A. Observe that (X,Y ) = (A, B/A) is an equilibrium point. Apply the
Lyapunov-Schmidt reduction to show that the original model reduces to a problem
of the form

ẋ = g(x,β) = x(αx + βλ).

Describe the type of bifurcation.

Exercise 10.16 Consider the Kuramoto-Sivashinsky model Eq. (10.36). Let x be
a one-dimensional domain. Extend the Galerkin reduction developed in Sect. 10.3
with N = 4 modes, i.e., let kmax = 2 in the basis the basis:
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ΦN
k=1 =

{√
2 cos (kx),

√
2 cos (kx), k = 1, . . . , kmax = 2

}

Exercise 10.17 Burger’s model appears in various fields such as acoustics, fluid
mechanics, traffic flow and gas dynamics, to mention only a few cases. The model is

∂u

∂t
+ u

∂u

∂x
= 1

Pe

∂2u

∂x2
. (10.69)

Let {Φk}Nk=1 be a generic POD basis for the decomposition of u(x, t). Derive a
reduced order model in terms of the POD modes.

Exercise 10.18 Consider the following models

(i)
dx

dt
= 27 + 3μ + μx + 12x + x2.

(ii)
dx

dt
= 24 − 3μ − μx + 11x + x2.

Rewrite the models in normal form. Then study the bifurcations and draw bifur-
cation diagrams for each case.

Exercise 10.19 Compute the normal form for a mathematical model on R
2 in the

neighborhood of an equilibrium point, where the linear part of the model is given by

L =
[
0 1
0 0

]
.

Exercise 10.20 Compute the normal form for a mathematical model on R
2 in the

neighborhood of an equilibrium point, where the linear part of the model is given by

L =
[
1 1
0 1

]
.

Compare the resulting normal form with that of the previous exercise.
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Appendix A
MATLAB Programs

This appendix provides the programs cited in the main text.

A.1 Algebraic Programs

Below we present a MatLab function to efficiently create the Vandermode matrices,
Am , from the data:

N = [N1, N2, ..., Nn]T .

This MATLAB function receives as input the data vector x and the degree, m, of
the approximation. The function can then be called by an external MATLAB code
to compute the desired polynomial fit.

1 function A = VandermodeA(x,m)
2 A = [ones(length(x) ,1)];
3 for i = 1:m
4 A = [A,x.^i];
5 end
6 end

Below is a MatLab code for finding the parameters for fitting an allometric model to
the metabolism data set.

1 % Allometric Model for Metabolism vs Weight
2 clear all;
3 close all;
4 clc;
5

6 load 'metabolism.data'
7 xdata = metabolism (:,1);
8 ydata = metabolism (:,2);
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9

10 % Linear Least Squares Fit to Logarithmic Data
11 Y = log(ydata); % Logarithm of y-data
12 X = log(xdata); % Logarithm of x-data
13

14 % Find Parametmeters k, mu to Model y = k*x^mu
15 p = polyfit(X,Y,1); % Linear fit to X and Y
16 mu = p(1) % Scaling exponent
17 k = exp(p(2)) % Multiplicative factor

Below is a MatLab code for the logarithmic fit to data with a linear least squares.

1 % Allometric Model
2 close all;
3 clear all;
4 clc
5

6 load 'metabolism.data'
7 xdata = metabolism (:,1);
8 ydata = metabolism (:,2);
9

10 x = linspace (0 ,700 ,50);
11

12 % Power law fit for model y = k*x^a
13 Y = log(ydata); % Logarithm of y-data
14 X = log(xdata); % Logarithm of x-data
15

16 p = polyfit(X,Y,1); % Linear fit to X and Y
17 a = p(1) % Scaling exponent
18 k = exp(p(2)) % Multiplicative factor
19 y = k*x.^a;
20

21 figure (1);
22 plot(xdata ,ydata ,'ko','LineWidth ' ,3);
23 hold on
24 plot(x,y,'b-','LineWidth' ,3);
25 grid on;
26 axis ([0 700 0 10000]);
27

28 % Set up fonts and labels for the Graph
29 fontlabs = 'Times New Roman';
30 xlabel('Weight (Kg)','FontSize ' ,16);
31 ylabel('Metabolism(Kcal)','FontSize ' ,16);
32 set(gca ,'FontSize ' ,40);
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A.2 Discrete Model Programs

A.2.1 Population Models for the United States

In Sect. 3.1 a Malthusian growth model, with a constant growth rate, was derived
to fit the U.S. census data from 1790 to 2010. Equation (3.1) represents the model
in the form of a discrete-time system. Later in Sect. 3.3.2, the Malthusian growth is
revised to include a linearly varying rate, which allows accounting for the declining
growth rate in U.S. population over the period of the census data.

Below is the MatLab code for finding the best parameter fits for three discrete
models: a Malthusian model with constant rate and twoMalthusian models with two
different linearly varying rates. In the latter cases, a best linear fit is used to estimate,
first, two parameters, a and b, then three parameters a, b, and initial condition P0.
The results are compared through Fig. 3.2

1 function uspop_model
2 close all;
3 clc;
4

5 xlab = '$t$ (Years after 1790) ';
6 ylab = 'Population ($\times 10^6$)';
7 xxpop = 1790:10:2010;
8 xxmod = 1790:10:2050;
9 yycpop = [3.929 5.308 7.240 9.638 12.866 17.069 23.192...

10 31.433 39.818 50.189 62.948 76.212 92.228 106.022...
11 122.775 132.165 150.697 179.323 203.302 226.546...
12 248.710 281.422 308.746];
13 N = length(yycpop);
14

15 % Best linear fit
16 for i=1:N-1
17 grow(i) = yycpop(i+1)/yycpop(i) - 1;
18 end
19 tgrow = 0:10:210;
20 a = polyfit(tgrow ,grow ,1);
21 tt = linspace (0 ,250 ,100);
22 gg = a(1)*tt + a(2);
23

24 figure (1);
25 plot(tgrow ,grow ,'bo','MarkerSize ' ,8);
26 hold on
27 plot(tt ,gg ,'k-','LineWidth ' ,2.5);
28 grid
29

30 xlim ([0 ,250]);
31 ylim ([0.05 0.4]);
32 fontlabs = 'Times New Roman ';
33 xlabel(xlab ,'FontSize ',16,'FontName ',fontlabs ,...
34 'interpreter ','latex ');
35 ylabel(ylab ,'FontSize ',16,'FontName ',fontlabs ,...
36 'interpreter ','latex ');
37 set(gca ,'FontSize ' ,36);
38 print -depsc usgrow.eps
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39 hold off
40

41 tmod = 0:10:220;
42 tN = 0:10:250;
43

44 % Best fitting Malthusian growth model
45 [p1m ,Jm] = fminsearch(@ssemal ,[4,0.2],[], yycpop);
46 mal(1) = p1m(1);
47 for i=2:26
48 mal(i) = (1+p1m(2))*mal(i-1);
49 end
50

51 % Fitting nonautonmous growth model with 2 parameters
52 [p1n ,Jn] = fminsearch(@ssenonmal ,4,[],a,yycpop);
53 nonmal (1) = p1n(1);
54 for i=2:26
55 nonmal(i) = (1+a(2)+a(1) *10*(i-2))*nonmal(i-1);
56 end
57

58 % Fitting nonautonmous growth model with 3 parameters
59 [p1n3 ,Jn3] = ...

fminsearch(@ssenonmal3 ,[4 , -0.001 ,0.37] ,[] , yycpop);
60 nonmal3 (1) = p1n3 (1);
61 for i=2:26
62 nonmal3(i) = (1+ p1n3 (3)+p1n3 (2) *10*(i-2))*nonmal3(i-1);
63 end
64

65 figure (2);
66 plot(tmod ,yycpop ,'bo','MarkerSize ' ,8);
67 hold on
68 plot(tN ,mal ,'g-','LineWidth ' ,2.5);
69 plot(tN ,nonmal ,'r-','LineWidth ' ,2.5);
70 plot(tN ,nonmal3 ,'k-','LineWidth ' ,2.5);
71 grid;
72 legend('U.S. Population ','Malthusian ','Nonautonomous (1)' ,...
73 'Nonautonomous (2)','location ','northwest ');
74 xlim ([0 ,250]);
75 ylim ([0 400]);
76 fontlabs = 'Times New Roman ';
77 xlabel(xlab ,'FontSize ',16,'FontName ',fontlabs ,...
78 'interpreter ','latex ');
79 ylabel(ylab ,'FontSize ',16,'FontName ',fontlabs ,...
80 'interpreter ','latex ');
81 set(gca ,'FontSize ' ,36);
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The followingMatLab functions are used to calculate the sum of the square errors
(SSE), which is commonly employed as a criterion to find the best fitting parameters.

1 function J = ssemal(pm,uscen)
2 %SSE for Malhusian growth
3 N = length(uscen);
4 pop(1) = pm(1);
5 for i=2:N
6 pop(i) = (1+pm(2))*pop(i-1);
7 end
8 err = pop - uscen;
9 J = err*err ';

10 end

1 function J = ssenonmal(pnm ,a,uscen)
2 %SSE for nonautonomous Malhusian model from ...

growth data
3 N = length(uscen);
4 pop(1) = pnm;
5 for i=2:N
6 pop(i) = (1+a(2)+a(1) *10*(i-2))*pop(i-1);
7 end
8 err = pop - uscen;
9 J = err*err ';

10 end

1 function J = ssenonmal3(pnm3 ,uscen)
2 %SSE for best fit nonautonomous Malhusian model
3 N = length(uscen);
4 pop(1) = pnm3 (1); % initial P0
5 for i=2:N % time simulation of nonautonomous ...

model
6 pop(i) = ...

(1+ pnm3 (3)+pnm3 (2) *10*(i-2))*pop(i-1);
7 end
8 err = pop - uscen;
9 J = err*err '; % SSE

10 end

Similarly, the logistic growth and Beverton-Holt autonomous models have three
parameters to fit. In MatLab the nonlinear minimizer fminsearchis employed to
find the least squares best fit of the model to the census data.

1 function uspop_auto
2 clear all;
3 close all;
4 clc;
5

6 hold off
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7 xlab = '$t$ (Years after 1790) ';
8 ylab = 'Population ($\times 10^6$)';
9

10 xxpop = 1790:10:2010;
11 xxmod = 1790:10:2050;
12 yycpop = [3.929 5.308 7.240 9.638 12.866 17.069 23.192...
13 31.433 39.818 50.189 62.948 76.212 92.228 106.022...
14 122.775 132.165 150.697 179.323 203.302 226.546...
15 248.710 281.422 308.746];
16 N = length(yycpop);
17 tmod = 0:10:220;
18 tN = 0:10:250;
19

20 % 3 parameter best fit to nonautonmous growth model
21 [p1n3 ,Jn3] = ...

fminsearch(@ssenonmal3 ,[4 , -0.001 ,0.37] ,[] , yycpop);
22 nonmal3 (1) = p1n3 (1);
23 for i=2:26
24 nonmal3(i) = (1+ p1n3 (3)+p1n3 (2) *10*(i-2))*nonmal3(i-1);
25 end
26

27 % 3 parameter best fit to logistic growth model
28 [p1lg ,Jl3] = fminsearch(@sselog3 ,[4 ,0.23 ,450] ,[] , yycpop);
29 plg3 (1) = p1lg (1);
30 for i=2:26
31 plg3(i) = (1+ p1lg (2)*(1-plg3(i-1)/p1lg (3)))*plg3(i-1);
32 end
33

34 % 3 parameter best fit to BH growth model
35 [p1bh ,Jbh3] = fminsearch(@ssebh3 ,[4 ,1.23 ,2100] ,[] , yycpop);
36 pbh3 (1) = p1bh (1);
37 for i=2:26
38 pbh3(i) = p1bh (2)*pbh3(i-1) /(1+ pbh3(i-1)/p1bh (3));
39 end
40

41 figure (1);
42 plot(tmod ,yycpop ,'ko','MarkerSize ' ,8);
43 hold on
44 plot(tN ,nonmal3 ,'k-','LineWidth ' ,2.5);
45 plot(tN ,plg3 ,'g-','LineWidth ' ,2.5);
46 plot(tN ,pbh3 ,'r-','LineWidth ' ,2.5);
47 grid;
48 legend('U.S. Population ','Nonautonomous ','Logistic ' ,...
49 'Beverton -Holt','location ','northwest ');
50

51 xlim ([0 ,250]);
52 ylim ([0 400]);
53 fontlabs = 'Times New Roman ';
54 xlabel(xlab ,'FontSize ',16,'FontName ',fontlabs ,...
55 'interpreter ','latex ');
56 ylabel(ylab ,'FontSize ',16,'FontName ',fontlabs ,...
57 'interpreter ','latex ');
58 set(gca ,'FontSize ' ,36);
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1 function J = sselog3(pl3 ,uscen)
2 %SSE for best fit logistic model
3 N = length(uscen);
4 pop(1) = pl3(1); % initial P0
5 for i=2:N % time simulation of logistic model
6 pop(i) = (1+pl3(2)*(1-pop(i-1)/pl3(3)))*pop(i-1);
7 end
8 err = pop - uscen;
9 J = err*err '; % SSE

10 end

1 function J = ssebh3(pbh3 ,uscen)
2 %SSE for best fit Beverton -Holt model
3 N = length(uscen);
4 pop(1) = pbh3 (1); % initial P0
5 for i=2:N % time simulation of Beverton -Holt model
6 pop(i) = pbh3 (2)*pop(i-1) /(1+ pop(i-1)/pbh3 (3));
7 end
8 err = pop - uscen;
9 J = err*err '; % SSE

10 end

A.2.2 Bifurcations in the Discrete Logistic Model

Thediscrete logisticmodelEq. (3.20) undergoes a sequence of transitions that include
period-doubling bifurcations and chaos. The MATLAB code used to generate the
bifurcation diagram of Fig. 3.11 is shown below. The visualization window of the
bifurcations can be changed by adjusting the parameters lambda min and lambda
max.

1 clear all;
2 close all;
3

4 Niterates = 700;
5 Nlambda = 1000;
6 Ntransients = 500;
7

8 % --------- Initial Conditions ---------
9 lambda_min = 0.0;

10 lambda_max = 3.9;
11 xmin = 0.0;
12 xmax = 1.0;
13

14 for k=1: Nlambda
15 lambda = lambda_min + ...

(lambda_max -lambda_min)*(k-1)/(Nlambda -1);
16

17 % --------- Transients ---------
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18 x0 = 0.1237;
19 for i=1: Ntransients
20 x1 = lambda*x0*(1.0-x0);
21 x0 = x1;
22 end;
23

24 % --------- Iterate ---------
25 for j=1: Niterates
26 x1 = lambda*x0*(1.0-x0);
27 x0 = x1;
28 t(j,k) = lambda;
29 v(j,k) = x1;
30 end;
31 end;
32

33 plot(t,v,'k.','Markersize' ,4);
34 xlabel('{r}');
35 ylabel('{x_n}');
36 set(gca ,'FontSize ' ,30);
37 grid on;
38 axis([ lambda_min lambda_max xmin xmax]);

A.2.3 Sensitive Dependence in the Logistic Model

TheLyapunovexponents of a dynamcial systemcanbeused todetermine thepresence
of chaotic behavior. The MATLAB code used to compute the Lyapunov exponents
of the logistic growth model of Fig. 3.15 is shown below. Positive exponents are
indicative of chaos.

1 clear all;
2 close all;
3

4 lyap=zeros (1 ,1000);
5 j=0;
6 for(r=1:0.001:4)
7 xn1=rand (1);
8 lyp=0;
9 j=j+1;

10 for(i=1:10000)
11 xn=xn1;
12 %logistic map
13 xn1=r*xn*(1-xn);
14 %wait for transient
15 if(i>300)
16 % calculate teh sum of logaritm
17 lyp=lyp+log(abs(r-2*r*xn1));
18 end
19 end
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20 %calculate lyapun
21 lyp=lyp /10000;
22 lyap(j)=lyp;
23 end
24 r=1:0.001:4;
25 plot(r,lyap ,'k','LineWidth' ,2);
26

27 xlabel('{r}','Fontsize ' ,12);
28 ylabel('{h(x)}','Fontsize ' ,12);
29 set(gca ,'FontSize ' ,30);
30 grid on;

A.3 Continuous Model Programs

In this part of the appendix we include MATLAB Codes for the Chapter on Contin-
uous Models.

A.3.1 Yeast Growth Models

In the analysis of yeast cultures, we studied their growth by finding parameter values
for exponential growth. One common method to find such parameters is through the
linear least squares best fit to approximate the logarithm of data. To do so, we can
create, in MATLAB, two vectors, one for the time data, t , and one for the population
data, P . Respectively:

t = [0 1.5 9 10]; P = [0.37 1.63 6.2 8.87];

Then a straight line is fitted through the time data and the logarithm of the population
data using the MATLAB command:

p = polyfit(t,log(P),1)

which gives the slope r = 0.2690 and intercept ln(P0) = −0.5034. The model can
then be written as:

P(t) = 0.6045e0.2690t .

The second method for studying the Malthusian growth model employs a non-
linear least squares best fit. The MATLAB codes for minimizing the sum of square
errors between the model and the data use the same data vectors from above. Then
the program listed below finds the sum of square errors:
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1 function J = yst_lstm(p, tdata , pdata)
2 % Least Squares fit to Logistic Growth
3 N = length(tdata);
4 yst = p(1)*exp(p(2)*tdata);
5 err = pdata - yst;
6 J = err*err '; % Sum of square errors
7 end

This program is executed within MATLAB’s nonlinear solver, fminsearch, to find
the best fitting parameters. The fminsearch needs a reasonable guess for P0 and
r , which can be obtained from either our algebraic solution or the linear fit to the
logarithm of the population data. The specific MatLab command is:
[p,J,flag] = fminsearch(@yst_lstm,p0,[],t,P)

where p0 = [0.6 0.27], and the result is p = [0.6949 0.2511], giving the best
continuous Malthusian growth model,

P(t) = 0.6949 e0.2511 t .

The second study of growth of yeast cultures uses the logistic growth model.
Once again, time, tdata, data, pdata and population data vectors are created. We
considered two time and population data sets, depending on the species of yeast
being studied. The nonlinear solver employs the MATLAB program fminsearch,
which also needs a reasonable initial guess for the parameters. An initial guess for the
parameters p0 = [P0, r, M] would be to take P0 = Pd(t0) (the first yeast volume), r
equal the value from the Malthusian growth model, and M = Pd(tN ) (the last yeast
volume). The sum of square errors code, which is used to find the best parameter fit,
is:

1 function J = yst_lst(p, tdata , pdata)
2 % Least Squares fit to Logistic Growth
3 N = length(tdata);
4 yst = p(1)*p(2)./(p(1) + (p(2)-p(1))*exp(-p(3)*tdata));
5 err = pdata - yst;
6 J = err*err '; % Sum of square errors
7 end

The best fitting parameters are obtained by running the code fminsearch:

p1 = fminsearch(@yst_lst,p0,[],tdata,pdata)

In this way, the best fitting parameters for S. cerevisiae are found to be:

P0 = 1.2343, r = 0.25864, M = 12.7421,

and for S. kephir are:

P0 = 0.67807, r = 0.057442, M = 5.8802
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with least SSE = 4.9460 and SSE = 1.3850, respectively. The best fitting solutions
satisfy:

Psc(t) = 12.742

1 + 9.323 e−0.2586t
and Psk(t) = 5.880

1 + 7.672 e−0.05744t
.

A.3.2 Two Species Competition

In Sect. 4.5 we described the main steps for finding the best fitting parameters to the
two yeast species competition model. Then in Appendix A.3.1 we found the param-
eters for the monocultures, which reduces the search for the remaining parameters,
a3 and b3, and initial conditions, X0 and Y0. Fitting the model (4.19) to the data in
Table 4.3 uses the sum of square errors (SSE) formula (4.24). This is included in the
MatLab function:

1 function J = leastcomp2(p,tdata ,xdata ,ydata)
2 global A1 A2 B1 B2
3 [t,y] = ...

ode23(@compet ,tdata ,[p(1),p(2)],[],A1 ,A2 ,p(3),B1 ,B2 ,p(4));
4 errx = y(:,1)-xdata ';
5 erry = y(:,2)-ydata ';
6 J = errx '*errx + erry '*erry;
7 end

Input of the data in Table 4.3 is required for this function. In addition, the parameters
from the monocultures, values for the initial conditions, X0 and Y0 (p(1),p(2)),
and the competition parameters, a3 and b3 (p(3),p(4)) are also required.

Recall that the competition model (4.19) does not have an algebraic solution.
Consequently, a numerical solution is required, and we see the previous program
calls MatLab’s Runge-Kutta-Fehlberg ODE solver, ODE23, which calls the model:

1 function dydt = compet(t,y,a1,a2,a3,b1,b2,b3)
2 % Competition Model for Two Species
3 tmp1 = a1*y(1) - a2*y(1)^2 - a3*y(1)*y(2);
4 tmp2 = b1*y(2) - b2*y(2)^2 - b3*y(1)*y(2);
5 dydt = [tmp1; tmp2];
6 end

Because the actual data has different population values at the same times, there are
some technical complications, which required special modifications to the program
above.

The main program is a script that downloads the data, sets up Global variables
from the monoculture logistic models, gives a good initial guess for the parameters,
and calls the fminsearchroutine.
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1 load yeast
2 global A1 A2 B1 B2;
3 A1 = 0.25864; A2 = 0.020298;
4 B1 = 0.057442; B2 = 0.0097687;
5 p = [0.4 0.63 0.057 0.0048];
6 p1 = fminsearch(@leastcomp2 ,p,[],tdmix ,scdmix ,skdmix)

The MatLab nonlinear solver fminsearch is used to find the least sum of square of
errors by adjusting the parameters in the ODE solver to fit the experimental data.
This MatLab code gives the best fitting interspecies competition parameters for the
competition model:

a3 = 0.057011 and b3 = 0.0047576

and initial conditions:

X (0) = X0 = 0.41095 and Y (0) = Y0 = 0.62578.

The least sum of square errors is 19.312.

A.3.3 Forced Linear Oscillator

The various modes of oscillations of a linear oscillator, shown in Fig. 4.20, were
obtained with the following MATLAB code:

1 function forced_lin_oscillator
2

3 clear all;
4 close all;
5 clc;
6

7 % ---------- Parameters ----------
8 w0 = 3.0;
9 m = 1.0;

10 f0 = 1.0;
11

12 w_min = 0.0;
13 w_max = 2.0;
14 N = 99;
15 h = (w_max - w_min) / N;
16 %w = [w_min:h:w_max ];
17

18 zeta0 = 0.0;
19 zeta1 = 0.1;
20 zeta2 = 0.2;
21 zeta3 = 0.3;
22 zeta4 = 0.5;
23 zeta5 = 1.0;
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24

25 for k = 1:N;
26 w(k) = w_min + (k-1)*w_max /(N-1);
27 A0(k) = 1 / (sqrt ((1 - w(k)^2)^2 + (2* zeta0*w(k))^2));
28 A1(k) = 1 / (sqrt ((1 - w(k)^2)^2 + (2* zeta1*w(k))^2));
29 A2(k) = 1 / (sqrt ((1 - w(k)^2)^2 + (2* zeta2*w(k))^2));
30 A3(k) = 1 / (sqrt ((1 - w(k)^2)^2 + (2* zeta3*w(k))^2));
31 A4(k) = 1 / (sqrt ((1 - w(k)^2)^2 + (2* zeta4*w(k))^2));
32 A5(k) = 1 / (sqrt ((1 - w(k)^2)^2 + (2* zeta5*w(k))^2));
33 end;
34

35

36 figure (1);
37 plot(w,A0 ,'k--',w,A1 ,'g',w,A2 ,'r',w,A3,'c',w,A4 ,'m',w,A5 ,...
38 'b','LineWidth ' ,4);
39 leg1=legend('\zeta =0.0','\zeta =0.1','\zeta =0.2' ,...
40 '\zeta =0.3','\zeta =0.5','\zeta =1.0');
41 xlabel('w/w_0','FontSize ' ,16);
42 ylabel('Amplitude ','FontSize ' ,16);
43 set(gca ,'FontSize ' ,36);
44 set(leg1 ,'FontSize ' ,36);
45 grid on;
46 %title('Numerical Solution ');
47 axis ([0 2 0 6]);

A.3.4 Weakly Forced van der Pol Oscillator

Equation (4.52) is a model for a weakly forced van der Pol oscillator. The synchro-
nization of the natural frequency with that of the external periodic force is demon-
strated in Fig. 4.29. The MATLAB code that was written to conduct the simulations
is shown below:

1 function vderpol_averaging
2

3 clear all;
4 close all;
5 clc;
6

7 % ---------- Parameters ----------
8 epsilon = 1.0;
9 w0 = 1.0;

10 wd = 1.1;
11 k = 1.0;
12

13 % ---------- Intial Conditions ----------
14 V0 = [0.26, 0.1];
15 W0 = [2.0, 3.0];
16

17 % ----------- Integrate ODEs -----------
18 tmin = 0.0;
19 tmax = 30;
20 xmin = -4.0;
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21 xmax = 4.0;
22 h = 0.1;
23 tspan = [tmin:h:tmax];
24

25

26 % ----------- Numerical Solution -------------
27 [t,v]=ode45(@vderpol_ODE ,tspan ,V0 ,[],epsilon ,w0 ,wd ,k);
28

29 x = v(:,1);
30 y = v(:,2);
31

32 figure (1);
33 subplot (2,1,1);
34 plot(t,x,'b',t,y,'r--','LineWidth ' ,2),
35 legend('x','y');
36 xlabel('Time','FontSize ' ,16);
37 ylabel('x,y','FontSize ' ,16);
38 title('Numerical Solution ');
39 axis([tmin tmax xmin xmax]);
40

41 subplot (2,1,2)
42 plot(x,y);
43 xlabel('x','FontSize ' ,16);
44 ylabel('y','FontSize ' ,16);
45

46

47 % ----------- Averaging ODE -------------
48 [t,w]=ode45(@transformed_ODE ,tspan ,V0 ,[],epsilon ,w0 ,wd ,k);
49

50 a1 = w(:,1);
51 a2 = w(:,2);
52

53 figure (2);
54 subplot (2,1,1);
55 plot(t,a1 ,'b',t,a2 ,'r--','LineWidth ' ,2),
56 legend('a_1','a_2');
57 xlabel('Time','FontSize ' ,16);
58 ylabel('a_1 ,a_2','FontSize ' ,16);
59 axis([tmin tmax -1.5 3.0]);
60

61 subplot (2,1,2)
62 plot(a1 ,a2);
63 xlabel('a_1','FontSize ' ,16);
64 ylabel('a_2','FontSize ' ,16);
65

66

67 % ----------- Comparison -------------
68 figure (3);
69

70 u = a1.*cos(wd*t) + a2.*sin(wd*t);
71

72 plot(t,x,'b',t,u,'k--','LineWidth ' ,2.5),
73 legend('x_{num}','x_{avg}');
74 xlabel('Time','FontSize ' ,16);
75 ylabel('x_{(t,\ epsilon)}','FontSize ' ,16);
76 %title('Averaging Solution ');
77 axis([tmin tmax xmin xmax]);
78 set(gca ,'FontSize ' ,30);
79 grid on;
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80

81

82

83 % --------- Right -Hand -Side of van der Pol ODEs ----------
84 function f = vderpol_ODE(t,v,epsilon ,w0 ,wd ,k)
85 x = v(1);
86 y = v(2);
87

88 f(1) = y;
89 f(2) = -w0^2*x + epsilon *(1.0 - x^2)*y + ...

epsilon*k*wd*cos(wd*t);
90

91 f=f';
92

93

94 % --------- Right -Hand -Side of Transformed ODEs ----------
95 function g = transformed_ODE(t,v,epsilon ,w0 ,wd ,k)
96 a1 = v(1);
97 a2 = v(2);
98 rho = (a1^2 + a2^2) /4.0;
99

100 g(1) = epsilon *(1 - rho)*a1 - ((wd^2-w0^2) /(2.0*wd))*a2;
101 g(2) = epsilon *(1 - rho)*a2 + ((wd^2-w0^2) /(2.0*wd))*a1 + ...

epsilon*k;
102

103 g=g';

The code compares the numerical solution obtained from integrating the original
model Eq. (4.52) with a solution obtained through the method of averaging.

A.4 Bifurcation Theory

In this section we include a few MATLAB codes for the Chapter on Bifurcation
Theory. The codes are for both discrete and continuous systems.

A.4.1 Sand Dollar Pattern

Figure 5.2 showcases the bifurcations of a discrete model Eq. (5.5) with DN5-
symmetry. The long-term behavior of this model is in the form of a sand-dollar
pattern. The MATLAB code for performing the simulations is shown below



542 Appendix A: MATLAB Programs

1 clear all;
2 close all;
3

4 % ---- Parameters ----
5 m = 5.0;
6 lambda = -2.34;
7 alpha = 2.0;
8 beta = 0.4;
9 gamma = 0.1;

10

11 Niterates = 60000;
12 Ntransients = 100;
13

14 % --------- Initial Conditions ---------
15 x_n = 0.1;
16 y_n = 0.1;
17

18 z_n = x_n + y_n*i;
19

20 % --------- Transients ---------
21 for i=1: Ntransients
22 z_np1 = (lambda + alpha*z_n*conj(z_n) + ...

beta*real(z_n^m))*z_n + ...
23 gamma*conj(z_n)^(m-1);
24

25 z_n = z_np1;
26 end;
27

28

29 % --------- Iterates ---------
30 for i=1: Niterates
31 z_np1 = (lambda + alpha*z_n*conj(z_n) + ...

beta*real(z_n^m))*z_n + ...
32 gamma*conj(z_n)^(m-1);
33

34 x(i) = real(z_n);
35 y(i) = imag(z_n);
36

37 z_n = z_np1;
38 end;
39

40 plot(x,y,'.k','Markersize' ,4);
41 xlabel('{x_n}');
42 ylabel('{y_n}');
43 set(gca ,'FontSize ' ,30);
44 grid on;
45 axis square;
46 axis ([-1.2 1.2 -1.2 1.2]);
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A.4.2 Neimark-Sacker Bifurcation

This type of bifurcation scenario is equivalent to that of the Hopf bifurcation but
for discrete systems. It occurs when a pair of complex-valued eigenvalues cross the
unit circle. The representative example shown in Fig. 5.14 was simulated with the
following MATLAB code.

1 clear all
2 close all
3 clc
4

5 N = 400; % Number of iterations
6

7 % ---------- Model Parameters ----------
8 a = 40.0;
9 r = 3.0;

10

11 % ---------- Initial Conditions ----------
12 x(1) =1.10;
13 y(1) =1.10;
14

15 for k=1:N-1
16

17 x(k+1)=r*x(k)*exp(-y(k));
18 y(k+1)=x(k)*(1 - exp(-a*y(k)));
19

20 end
21

22 % ---------- Plotting -----------
23 figure (1);
24 clf
25 plot(x,y,'o','MarkerEdgeColor ' ,...
26 'b','MarkerFaceColor ' ,...
27 'r','markersize ' ,5)
28 xlabel('{x_n}');
29 ylabel('{y_n}');
30 axis ([0 2.5 0 2.5]);
31 set(gca ,'FontSize ' ,30);
32 grid on;

A.5 Hybrid Model Programs

In this part of the appendix we include MATLAB Codes for the Chapter on Hybrid
Models. The computer simulations of the solutions of the spring-massmodelEq. (6.5)
shown in Fig. 6.2 were obtained through the MATLAB code below.
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1 % ---------------------------------------
2 % Two Spring -Mass System
3 % ---------------------------------------
4 function sm_system
5

6 close all;
7 clear all;
8 clc;
9

10 % ------- Parameters -------
11 m = 1.0;
12 c = 0.1;
13 k = 1.0;
14 par = [m;c;k];
15

16 tmin = 0.0;
17 tmax = 60.0;
18 h = 0.01;
19 trans = 10.0;
20 tspan_trans = [tmin:h:trans];
21 tspan = [tmin:h:tmax];
22

23 % --------------- Integrate ODE ...
----------------

24 options = odeset('RelTol',1e-10);
25 V0 = [0.1 ,0.3 ,0.1 ,0.3] ';
26 [t_trans ,v_trans] = ...

ode45(@rhs_ode ,tspan_trans ,V0,options ,par);
27

28 V0 = v_trans(end ,:) ';
29 [t,v] = ode45(@rhs_ode ,tspan ,V0,options ,par);
30

31 % --------------- Plot Results --------------
32 xmin = -2.0;
33 xmax = 2.0;
34

35 % ------ Time Series -------
36 figure (1);
37 plot(t,v(:,1),'b',t,v(:,3),'k','LineWidth' ,3);
38 legend('x_1','x_3');
39 ylabel('{x_1 , x_3}');
40 set(gca ,'FontSize ' ,40);
41 grid on;
42 axis([tmin tmax -0.25 0.25]);
43

44 % ------ Phase -Space -------
45 figure (2);
46 plot(v(:,1),v(:,3),'LineWidth' ,3);
47 xlabel('{x_1}'); ylabel('{x_3}');
48 set(gca ,'FontSize ' ,50);
49 grid on;
50

51 function f = rhs_ode(t,v,par)
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52 x1 = v(1);
53 x2 = v(2);
54 x3 = v(3);
55 x4 = v(4);
56 m = par(1);
57 c = par(2);
58 k = par(3);
59

60 % -------- Write RHS of ODEs --------
61 f(1) = x2;
62 f(2) = -(k/m)*x1 - (c/m)*x2 + k*(x3 - x1);
63 f(3) = x4;
64 f(4) = -(k/m)*x3 - (c/m)*x4 + k*(x1 - x3);
65

66 f = f';

A.6 Delay Model Programs

This section of the appendix documents MATLAB programs for the Chapter on
Delay Models. The code employ the numerical solver dd23 developed by Shampine
and Thompson [1].

A.6.1 Epidemic Model Programs

In Sect. 7.4 we introduced a delaymodel for the spread of an epidemic. The computer
simulations of the solutions, with and without delay, shown in Fig. 7.5 were obtained
through the MATLAB code below.

1 function epidemic;
2

3 close all;
4 clear all;
5 clc;
6

7 % Parameters
8 B = 2;
9 C = 1;

10

11 history = [0.8];
12 tspan = [0 80];
13

14 % Solve the ODEs that arise when there is no delay.
15 sol1 = dde23(@ddefun ,[],history ,tspan ,[],B,C);
16

17 % Solve the DDEs that arise when there is a delay of r.
18 sol2 = dde23(@ddefun , [7], history , tspan ,[], B,C);
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19

20 figure (1)
21 plot(sol1.x,sol1.y,'b-','Linewidth ', 3), hold on;
22 plot(sol2.x,sol2.y,'k-','Linewidth ', 3);
23 xlabel('Time t');
24 ylabel('x(t)');
25 legend('No Delay ','Delay ','Location ','NorthEast ');
26 set(gca ,'FontSize ' ,40);
27 grid on;
28

29 function dxdt = ddefun(t,x,Z,B,C) % equation being solved
30 if isempty(Z) % ODEs
31 dxdt = B*x(1)*(1 - x(1)) - C*x(1);
32 else
33 xlag = Z(:,1);
34

35 dxdt = B*xlag (1)*(1 - x(1)) - C*x(1);
36 end

A.6.2 Lotka-Volterra Model

In Sect. 7.5 we studied the effects of a time delay in a predator-prey model. In
particular, we used the model to study the emergence of small amplitude oscillations
via Hopf bifurcations driven by delay.

The computer simulations of the solutions, with and without delay, shown in
Fig. 7.4 were obtained through the MATLAB code below.

1 function lotka_volterra;
2

3 close all;
4 clear all;
5 clc;
6

7 % Parameters
8 a = 1.0;
9 b = 1.0;

10 c = -2.0;
11 d = 1.0;
12 mu1 = 1;
13 mu2 = -1;
14

15 history = [0.5; 0.8];
16 tspan = [0 500];
17 opts = ddeset('RelTol',1e-5,'AbsTol',1e-8);
18 % Solve the ODEs that arise when there is no ...

delay.
19 sol1 = dde23(@ddefun ,[],history ,tspan ,[], ...

a,b,c,d,mu1 ,mu2);
20
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21 % Solve the DDEs that arise when there is a ...
delay of r.

22 sol2 = dde23(@ddefun ,[2.2] , history , ...
tspan ,opts , a,b,c,d,mu1 ,mu2);

23

24 figure (1)
25 plot(sol1.x,sol1.y(1,:),'b-','Linewidth', 3), ...

hold on;
26 plot(sol2.x,sol2.y(1,:),'k-','Linewidth', 3);
27 xlabel('t');
28 ylabel('y(t)');
29 legend('No Delay','Delay','Location ','NorthEast ');
30 set(gca ,'FontSize ' ,40);
31 grid on;
32

33 figure (2)
34 plot(sol1.y(1,:),sol1.y(2,:),'b-','Linewidth', ...

3), hold on;
35 plot(sol2.y(1,:),sol2.y(2,:),'k-','Linewidth', 3);
36 xlabel('x(t)');
37 ylabel('y(t)');
38 legend('No Delay','Delay','Location ','NorthEast ');
39 set(gca ,'FontSize ' ,40);
40 grid on;
41

42 % equation being solved
43 function v = ddefun(t,x,Z,a,b,c,d,mu1 ,mu2)
44 v = zeros (2,1);
45 if isempty(Z) % ODEs
46 v(1) = x(1)*(mu1 - a*x(1) - b*x(2));
47 v(2) = x(2)*(mu2 - c*x(1) - d*x(2));
48 else
49 xlag = Z(:,1);
50

51 v(1) = x(1)*(mu1 - a*x(1) - b*xlag (2));
52 v(2) = x(2)*(mu2 - c*xlag (1) - d*x(2));
53 end

A.6.3 Nyquist Plots

In Sect. 7.7 we introduced the Nyquist method as a visual technique to study the
stability of delay differential equations.

Below is theMatLab code that was written to create the Nyquist plots for the first
example shown in Fig. 7.11.
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1 function Nyquist_ex1
2

3 close all;
4 clear all;
5 clc;
6

7 tau = 1.0;
8

9 % ============== Example 1 ===========
10 q1 = 1;
11 p1 = [1 0];
12 L1 = tf(q1,p1,'InputDelay',tau);
13

14 nyquist(L1);
15

16 set(gca ,'FontSize ' ,40);
17 axis([-2 2], [-2 2]);

We also applied the Nyquist technique to study the delay-induced oscillations in
a Lotka-Volterra model. Below is the MatLab code that was written to create the
Nyquist plots for the third example shown in Fig. 7.13.

1 function Nyquist_ex3
2

3 close all;
4 clear all;
5 clc;
6

7 tau = 0.5;
8

9 q3 = 4/9;
10 p3 = [1 1 2/9];
11 L3 = tf(q3,p3,'InputDelay' ,2*tau);
12

13 nyquist(L3);
14

15 set(gca ,'FontSize ' ,40);

A.7 Stochastic Models

This section of the appendix documents MATLAB programs for the Chapter on
Stochastic Models.
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A.7.1 Stochastic Model of Stock Prices

In Sect. 9.2.2 we introduced a stochastic model for stock prices. Actually, the model
describes the fluctuations in the relative change of price dP/P , where P(t) represents
the price of a stock at time t . The computer simulations of the deterministic and
stochastic solutions shown in Fig. 9.1 were obtained through the Euler-Maruyama
code below.

The command pd=makedist('Normal',0,sqrt(dt)), creates a normal (Gaus-
sian) distribution with mean 0 and standard deviation

√
dt . The distribution is stored

in the variable pd. The command random(pd), returns a random number from the
previously created probability distribution.

1 function stock_prices
2

3 close all;
4 clear all;
5 clc;
6

7 % Model Parameters
8 mu = 2;
9 sigma = 1.0;

10

11 randn('state ' ,100);
12 tspan = [0 1]; % The bounds of t
13 N = 1000; % Compute 1000 grid points
14 dt = (tspan (2) - tspan (1)) / N;
15 T = N*dt;
16

17 pi0 = 1.0; % Initial Stochastic Price condition
18 qi0 = 1.0; % Initial Deterministic Price condition
19 pi = zeros(1,N); % 1xN Matrix of zeros
20 qi = zeros(1,N);
21 pi(1) = pi0;
22 qi(1) = qi0;
23

24 pd = makedist('Normal ',0,sqrt(dt));
25 dW = random(pd);
26

27 for j = 2:N
28 dW = random(pd);
29 pi(j) = pi(j-1) + mu*pi(j-1)*dt + sigma*pi(j-1)*dW;
30 qi(j) = qi(j-1) + mu*qi(j-1)*dt;
31 end
32

33 figure (1)
34 hold on;
35 plot ([0:dt:T],[pi0 ,pi], 'k-', 'Linewidth ', 3), hold on;
36 plot ([0:dt:T],[qi0 ,qi], 'b-', 'Linewidth ', 3);
37 xlabel('t','FontSize ' ,12);
38 ylabel('P(t)','FontSize ' ,12);
39 legend('Stochastic ','Deterministic ');
40

41 set(gca ,'FontSize ' ,40);
42 grid on;



550 Appendix A: MATLAB Programs

A.7.2 Ornstein-Uhlenbeck Process

In Sect. 9.3 we introduced the Ornstein-Uhlenbeck process as a method to model
stochastic systems subject to colored noise. The formulation employs a Langevin
form. The simulation shown in Fig. 9.2 was created through the Euler-Maruyama
algorithm. The code is shown below.

1 function ou
2

3 close all;
4 clear all;
5 clc
6

7 randn('state' ,100)
8 tau = 1;
9 xi0 = 1;

10 dt = 0.01;
11 D = 0.5;
12 N = 1000;
13 T = N*dt;
14

15 pd = makedist('Normal',0,sqrt(dt));
16 dW = random(pd);
17

18 xi = zeros(1,N); % preallocate for ...
efficiency

19 xi(1) = xi0 - dt*xi0/tau + sqrt (2*D)*dW/tau;
20

21 for j=2:N
22 dW = random(pd);
23 xi(j) = xi(j-1) - dt*xi(j-1)/tau + ...

sqrt (2*D)*dW/tau;
24 end
25

26 plot ([0:dt:T],[xi0 ,xi],'k-', 'LineWidth' ,3);
27 xlabel('t','FontSize ' ,12)
28 ylabel('\eta(t)','FontSize ',16,'Rotation ' ,0,...
29 'HorizontalAlignment ','right');
30 set(gca ,'FontSize ' ,40);
31 grid on;

A.7.3 Fokker-Planck Equation

In Sect. 9.5 we introduced the Fokker-Planck equation for the probability density
function, p(x, t), which measures the probability that a stochastic system is in state
x at time t . An example of a 2D stochastic model with a limit cycle solution was
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studied. The evolution around the limit cycle shown in Fig. 9.5 was obtained with
the following code.

1 function Limit_Cycle
2

3 close all;
4 clear all;
5 clc;
6

7 % Model Parameters
8 mu = 0.1;
9 omega = 0.1;

10

11 randn('state ' ,100);
12 tspan = [0 10]; % The bounds of t
13 N = 1000; % Compute 1000 grid points
14 dt = (tspan (2) - tspan (1)) / N;
15 T = N*dt;
16

17 x1 = zeros(1,N); % 1xN Matrix of zeros
18 x2 = zeros(1,N);
19 y1 = zeros(1,N); % 1xN Matrix of zeros
20 y2 = zeros(1,N);
21 x1(1) = 1.0;
22 x2(1) = 0.0;
23 y1(1) = 1.0;
24 y2(1) = 0.0;
25

26 pd1 = makedist('Normal ' ,0,0.3* sqrt(dt));
27 pd2 = makedist('Normal ' ,0,0.3* sqrt(dt));
28

29 for j = 2:N
30 x1t = x1(j-1);
31 x2t = x2(j-1);
32 y1t = y1(j-1);
33 y2t = y2(j-1);
34

35 dW_1 = random(pd1);
36 dW_2 = random(pd2);
37 x1(j) = x1t + mu*(1-x1t^2-x2t^2)*x1t - omega*x2t + dW_1;
38 x2(j) = x2t + mu*(1-x1t^2-x2t^2)*x2t + omega*x1t + dW_2;
39

40 y1(j) = y1t + mu*(1-y1t^2-y2t^2)*y1t - omega*y2t;
41 y2(j) = y2t + mu*(1-y1t^2-y2t^2)*y2t + omega*y1t;
42 end
43

44 figure (1)
45 plot(x1 ,x2 ,'k*', 'Linewidth ', 3), hold on;
46 plot(y1 ,y2 ,'b-', 'Linewidth ', 3);
47 xlabel('x_1','FontSize ' ,12);
48 ylabel('x_2','FontSize ' ,12);
49 legend('Stochastic ','Deterministic ');
50

51 set(gca ,'FontSize ' ,40);
52 grid on;
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Computations of Phase Drift

Colored noise is employed to simulate fluctuations due to electronic components.
This means that the noise is assumed to be Gaussian, band-limited, having a zero
mean, a variance σ2, and have a specific correlation time, τc. The noise is assumed
to not drive the dynamics of the system, this corresponds to τ f � τc, where τ f is
the time-constant of each crystal oscillator [2, 3]. These assumptions lead us to re-
write the averaged equations for a network of N crystals with unidirectional and
bidirectional coupling in a more general Langevin form:

żk = f (zk, a, b, R1) +
N∑

j→k

λk j h(zk, z j ) + zk(η
A
k (t) + η

p
k (t)i)

η̇A
k = −ηk

τc
+

√
2D

τc
ξA
k

η̇
p
k = −ηk

τc
+

√
2D

τc
ξ
p
k ,

(B.1)

where, for convenience, we have replaced zk1 with simply zk (since zk2 = 0 at all
times), f is a smooth function in zk which defines the (averaged) internal dynamics
of each mode of oscillation in each crystal, and h is the coupling function between
those crystals j that are coupled to each crystal k, with coupling strength λk j , N is the
total number of crystals in the network, τc and D are correlation time and intensity
of noise, respectively.

The functions ηA
k and η

p
k describe the noise applied, respectively, to the amplitude

and phase of each kth oscillator, ξA
k and ξ

p
k are Gaussian distributed random variables

with zero mean, and standard deviation σ. Each colored noise function is character-
ized by 〈ηA

i (t)〉 = 0, 〈η p
i (t)〉 = 0 and 〈ηA

i (t)ηA
j (s)〉 = (D/τc) × exp [−|t − s|/τc],

〈η p
i (t)η p

j (s)〉 = (D/τc) × exp [−|t − s|/τc], where D = σ2τ 2
c /2 [4]. As τc → 0 the

noise becomes white, however in practice all noise is band limited [5].
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Phase error is calculated by first locating the zeros of the solution. The zeros are
approximated using a standard three point quadratic interpolation method. From the
location of the zeros, the periods of oscillation are calculated. Let P = {pi }ni=1 be the
sequence of periods and σp be themean absolute deviation of the periods. Then phase
error is defined as σp/E(P)—the mean absolute deviation divided by the expected
period length. Under normal conditions the standard deviation is normally used for
phase error; however due to the natural length of the periods, the squared error for
each period is smaller than machine epsilon leaving those measurements unreliable.
The mean absolute deviation does not square the values so that the calculations stay
away from machine epsilon, O(1 × 10−16).

When noise is removed from the equation the phase error is 0. The size of the
sequence of periods is dictated by the saved integration time. The integration time
used for the data sets considered in this section was 3.5 × 10−5 s. The corresponding
period for the 22MHz solution is approximately 4.5 × 10−08 s. Therefore, the phase
error is the sample standard deviation of approximately 778 cycles. Since there is
a significant variation between the uncoupled scaling and the scaling for a rotating
wave pattern, RW1, the phase error analysis was expanded to examine the phase
reduction along the coupling interval 0 < λ < 0.99. Figure 9.11 illustrates the per-
formance with respect to the scaling exponent, i.e., this figure is a log plot phase
error, Err(N ,λ) = Nm(λ).

Samples are taken for 100 values of λ. For each value of λ, the mean phase error
for 50 repeated simulations is calculated for N = 3, 5, . . . , 21. Then a least squares
regression is performed on the log of these values, producing the scaling exponents
depicted in Fig. 9.11. This analysis suggests that strong coupling is preferable toweak
coupling to produce optimal scaling. From Fig. 9.11, the optimal scaling is found
at λ = 0.99 with m = −0.8947. Notice that for λ ∈ (0, 0.387), the coupled system
performs poorly compared to the uncoupled standard, having a scaling exponent
m(λ) > −0.5.When the circuit is coupled the inherent noise of eachnode is amplified
by the coupling, and in the case of 0 < λ < 0.387 the coupling is too weak to
overcome the amplification in noise.
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Proper Orthogonal Decomposition

InChap. 8, theProperOrthogonalDecomposition (POD)was introduced as technique
for the analysis of spatio-temporal data sets. In this appendix, we discuss additional
properties of the POD decomposition and its relation to systems with symmetry.

C.1 Properties

Since the kernel is Hermitian, r(x, y) = r∗(y, x), it admits according to Riesz
Theorem [6], a diagonal decomposition of the form

r(x, y) =
N∑

k=1

λk �k(x)�∗
k(y). (C.1)

This fact is particularly useful when finding the POD modes analytically. They can
be read off from the diagonal decomposition (C.1).

The temporal coefficients, ak(ti ), are calculated by projecting the data set on each
of the eigenfunctions

ak(ti ) = (u(x, ti ),�k(x)) , i = 1, . . . , M. (C.2)

It can be shown that both temporal coefficients and eigenfunctions are uncorrelated
in time and space, respectively [7, 8].

Proposition C.1 The POD modes, {�k(x)}, with corresponding temporal coeffi-
cients, {ak(ti )}, satisfy the following orthogonality properties

(i) �∗
j (x)�k(x) = δ jk
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(ii) 〈a j (ti ) a∗
k (ti )〉 = δ jk λ j

where δ jk represents the Kronecker delta function.

Property (ii) is obtained when the terms in the diagonal decomposition (C.1) are
compared with the expression

r(x, y) =
∑

〈a j (ti ) a
∗
k (ti )〉� j (x)�∗

k(y).

The nonnegative and self-adjoint properties of r(x, y) imply that all eigenvalues
are nonnegative and can be ordered accordingly: λ1 ≥ λ2 . . . ≥ . . . ≥ 0. Statisti-
cally speaking, λk represents the variance of the data set in the direction of the
corresponding POD mode, �k(x). In physical terms, if u represents a component
of a velocity field, then λk measures the amount of kinetic energy captured by the
respective POD mode, �k(x). In this sense, the energy measures the contribution of
each mode to the overall dynamics.

Definition C.1 The total energy captured in a POD decomposition of a numerical
or experimental data set is defined as the sum of all eigenvalues

E =
N∑

k=1

λk . (C.3)

The relative energy captured by the kth mode, Ek , is defined by

Ek = λk

N∑

j=1

λ j

. (C.4)

The cumulative sum of relative energies,
∑

Ek , approaches one as the number of
modes in the reconstruction increases.

Spatiotemporal systems are capable of producing different kinds of behavior
including periodic, quasiperiodic and nonperiodic motion in space and time. In some
cases, the POD decompositions of qualitatively different states may produce seem-
ingly similar spectra. However, the decomposition can still be used to differentiate
between different solutions. One possibility is to apply the POD decomposition to
the state of interest and then use the POD energy spectrum to calculate the entropy of
the data set. The entropy is a measure of order or disorder and provides an objective
way of classifying the complexity in experimental or numerical data.

Definition C.2 The entropy of a POD decomposed data set, u, can be calculated
from its energy spectrum according to
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Entropy(u) = − lim
N→∞

1

log N

N∑

k=1

Ek log Ek . (C.5)

where log N is a normalization factor which allows comparisons between different
data sets.

The entropy, as defined by (C.5), measures the energy distribution among the
modes in the POD spectra and varies between 0 and 1, as the number of modes
increases. The entropy is low when the energy is concentrated in a few modes. A
zero entropy indicates that only one eigenfunction, with maximal energy E1 = 1,
is needed to reproduce the dynamics. The entropy approaches 1 when the energy
spreads across a large number of modes, indicating complex behavior.

Equation (8.46) states that POD decomposition produces a basis that minimizes
the least square truncation error. This property can also be stated in terms of the
energy captured by the POD modes.

Proposition C.2 Let {ak(ti ),�k(x)} be the POD-basis pairs obtained from a scalar
field u(x, ti ), satisfying Eq. (8.45), (C.1) and (C.2). Let {bk(ti ),�k(x)} be any arbi-
trary orthonormal basis pair satisfying (8.45). The POD-basis is optimal in the sense
that the total cumulative energy captured by the sequence {ak(ti ),�k(x)} is always
greater or equal to the total cumulative energy captured by {bk(ti ),�k(x)}, pro-
vided that the number of eigenfunctions (respecting their ordering frommost to least
energetic) employed is the same. Formally

N∑

k=1

Ek =
N∑

k=1

〈ak(ti ) a∗
k (ti )〉 =

N∑

k=1

λk ≥
N∑

k=1

〈bk(ti ) b∗
k (ti )〉 (C.6)

C.2 Consequences of Symmetry

One motivation for applying POD decomposition is to obtain information about
the long-term behavior of the system. Suppose that this behavior is captured by an
attractor, denoted by A (see [9] for a precise definition). Assume also that scalar
measurements of the system, g(x, ti ) , i = 1, . . . , M , are provided. In practice, one
must first compute the average ḡ(x) = 1

M

∑M
i=1 g(x, ti ), in order to produce a new

set of measurements, u(x, ti ) = g(x, ti ) − ḡ(x), with zero average. Let � denote the
group of symmetries of the system of interest. The symmetries of the attractor form
a subgroup of � defined by

�(A) = {γ ∈ � | γA = A} . (C.7)

The critical observation is that the symmetries of the attractor,A, appear as symme-
tries of the time-average, ḡ(x), independent of the symmetries of the instantaneous
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scalar field g(x, ti ) [10]. Unfortunately, the converse is not always true. The symme-
tries of the time-average do not necessarily reflect the symmetries of the underlying
attractor. Furthermore, the POD decomposition satisfies the following symmetry
properties.

Proposition C.1 Let, {�(x)}, be the POD eigenfunctions satisfying the eigenvalue
problem 〈u(x, t) u∗(y, t)〉�(y) = λ�(x). Then

(i) 〈γ u(x, t) γ u∗(y, t)〉 γ �(y) = λ (γ �(x)), for all γ ∈ �.

(ii) 〈σ u(x, t)σ u∗(y, t)〉 = 〈u(x, t) u∗(y, t)〉, for all σ ∈ �(A).

(iii) 〈 u(x, t) u∗(y, t)〉 σ �(y) = λ (σ �(x)), for all σ ∈ �(A).

Property (i) establishes that the eigenfunctions in the POD decomposition of
γ u(x, t) are those of u(x, t) under the action of γ. This property explains the obser-
vation that the POD decomposition of a periodic data set is not unique. If �(x) is
an eigenfunction, so is γ �(x), for all γ ∈ �. Which one is then chosen? In the case
of experimental or computational data, the answer depends on how the data is col-
lected. Performing the decomposition with different initial conditions may produce
a rotated version of�(x). Nevertheless, the important point is to realize that they are
all symmetrically related. Properties (ii) and (iii) indicate that the POD kernel and
its eigenvectors have at least the same symmetries of the attractor.

References

1. L.F. Shampine, S. Thompson, Solving ddes in matlab. Appl. Numer. Math. 37, 441–458 (2001)
2. C.W. Gardiner, Handbook of Stachastic Methods, 3rd edn. (Springer, Complexity, 2003)
3. M. Lopez S. Wio, R. Deza, An Introduction to Stochastic Processes and Nonequilibrium Sta-

tistical Physics (World Scientific Publishing, 2012)
4. B. Hajek, Random Processes for Engineers (Cambridge University Press, 2015)
5. G. Adomian, Nonlinear Stochastic Systems Theory and Applications to Physics. Mathematics

and Its Applications, vol. 46 (Springer, Netherlands, 1989)
6. F. Riesz, B. Sz-Nagy, Functional Analysis (Dover Publications, 1990)
7. P. Holmes, J. Lumley, G. Berkooz, Turbulence, Coherenet Structures, Dynamical Systems and

Symmetry (University Press, Cambridege, 1996)
8. L. Sirovich, Turbulence and the dynamics of coherent structures. Part I: Coherent structures.

Q. Appl. Math. 5, 561 (1987)
9. J. Hale, Ordinary Differential Equations (Dover Publications, 2009)
10. M. Dellnitz, M. Golubitsky, M. Nicol, Symmetry of attractors and the karhunen-loeve decom-

position, in Trends and Perspectives in Applied Mathematics, ed. by L. Sirovich, vol. 100
(Springer, 1990), p. 73



Index

A
Absolute irreducibility, 237
Action potential, 135
Agent-based modeling, 390
Algebraic models, 9

Exercises, 36
Allee effect, 79, 359
Allometric models, 27

Kleiber’s Law, 28
Alternating representation, 418
Amortization, 46
Annuity model, 78
Apoptosis, 479
Arnold tongue, 284
Asymptotically stable, 310
Asymptotic stability, 313
Atomic bomb, 34
Attractors, 149
AUTO, 307
Autoimmune disease, 249
Autonomous differential equation, 88
Averaging theorem, 115

B
Basin of attraction, 445
Bayesian Information Criterion, 19
Beam steering, 292

array factor, 293
Bernoullli-Euler beam theory, 183
Bessel’s differential equation, 372
Beverton-Holt model, 50
Biasing signal, 149
Bidirectionally coupled oscillators, 266
Bifurcation, 179

bifurcation parameters, 180
bifurcation point, 180
codimension, 187
codimension one in continuous systems,
206

codimension one in discrete systems, 188
conditions, 185, 186
continuability, 189
global, 223
Hopf, 215
Neimark-Sacker, 201
nondegeneracy conditions, 212
period doubling, 198
pitchfork, 194, 211
saddle node, 189, 207
single-bubble injector, 398
symmetry breaking, 233
transcritical, 192, 209

Bistability, 80, 148, 149
Boltzmann’s constant, 154, 195
Brusselator model, 184
Bubble dynamics, 393

bifurcation analysis, 398
computational model, 395
Lyapunov exponent, 405
model fitting, 403
phase-space embedding, 401

Buckingham Pi theorem, 32

C
Carrying capacity, 89
Catastrophe theory, 179
Cauchy’s principle of argument, 342
Center manifold, 489

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2022
A. Palacios,Mathematical Modeling, Mathematical Engineering,
https://doi.org/10.1007/978-3-031-04729-9

559

https://doi.org/10.1007/978-3-031-04729-9


560 Index

computation, 490
existence, 491
parameter dependence, 494
stability, 491

Chaos, 72, 78
Chaotic attractor, 225
Chaotic sets, 309
Characteristic equation, 328
Chemostat, 85, 86
Chirping crickets, 9
Circadian ryhtms, 148
Coexistence, 103, 104
Collective pattern, 299
Colored noise, 438
Colored noise in bistable systems, 443
Colpitts oscillator, 170, 219, 248
Compartmental model, 158
Competition, 100
Competition model, 103

fitting, 108
two species, 103

Competitive exclusion, 103
Complex networks, 257
Compound interest, 46
Conservation equation, 364
Conservation law, 364
Continuous models, 85

existence and uniqueness, 94
Logistic growth, 88
phase portrait, 93
qualitative analysis, 91

Continuous random variable, 431
Continuous systems, 310
Control: negative, 331
Coriolis force, 452
Coupled cell systems, 262
Coupled Colpitts oscillators, 270
Coupled differential equations, 262
Coupled fluxgate

linearization, 348
Coupled fluxgate sensor

bifurcation analysis, 301
dc detection, 298
effects of delay, 346
frequency response, 307
group orbits, 301
large arrays, 352
model, 300
multiple delays, 347
onset of oscillations, 305
residence time detection, 308
sensitivity response, 308
single delay, 347

synchronous equlibria, 348
Coupled lasers, 147
Coupling function, 299
Coupling schemes, 299
Crystal oscillators, 140

averaging, 145
two-mode model, 141

D
Degenrate feature, 310
Delay, 325, 346

absolute stability, 332
logistic growth, 338
neural network, 357
periodic breathing, 354
red blood cells model, 356
stability analysis, 327
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